Water uptake and equilibrium sizes of aerosol particles at high relative humidities: Their dependence on the composition of the water-soluble material

1978 ◽  
Vol 116 (1) ◽  
pp. 130-148 ◽  
Author(s):  
J�rg Thudium
2008 ◽  
Vol 8 (7) ◽  
pp. 1985-1988 ◽  
Author(s):  
H. Kokkola ◽  
M. Vesterinen ◽  
T. Anttila ◽  
A. Laaksonen ◽  
K. E. J. Lehtinen

Abstract. In this paper, we consider the cloud drop activation of aerosol particles consisting of water soluble material and an insoluble core. Based on the Köhler theory, we derive analytical equations for the critical diameters and supersaturations of such particles. We demonstrate the use of the equations by comparing the critical supersaturations of particles composed of ammonium sulfate and insoluble substances with those of model organic particles with varying molecular sizes.


2015 ◽  
Vol 15 (15) ◽  
pp. 8847-8869 ◽  
Author(s):  
E. F. Mikhailov ◽  
G. N. Mironov ◽  
C. Pöhlker ◽  
X. Chi ◽  
M. L. Krüger ◽  
...  

Abstract. In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws) fraction was estimated to be ~ 0.15 for the accumulation mode and ~ 0.36 for the coarse mode, respectively. The obtained κv,ws for the accumulation mode is in good agreement with earlier data reported for remote sites in the Amazon rain forest (κv ≈ 0.15) and a Colorado mountain forest (κv ≈ 0.16 ). We used the Zdanovskii–Stokes–Robinson (ZSR) mixing rule to predict the chemical composition dependent hygroscopicity, κv,p. The obtained κv,p values overestimate the experimental FDHA-KIM-derived κv,ws by factors of 1.8 and 1.5 for the accumulation and coarse modes, respectively. This divergence can be explained by incomplete dissolution of the hygroscopic inorganic compounds resulting from kinetic limitations due to a sparingly soluble organic coating. The TEM and STXM-NEXAFS results indicate that aged submicron (> 300 nm) and supermicron aerosol particles possess core–shell structures with an inorganic core, and are enriched in organic carbon at the mixed particle surface. The direct FDHA kinetic studies provide a bulk diffusion coefficient of water of ~ 10−12 cm2 s−1 indicating a semi-solid state of the organic-rich phase leading to kinetic limitations of water uptake and release during hydration and dehydration cycles. Overall, the present ZOTTO data set, obtained in the growing season, has revealed a strong influence of organic carbon on the hygroscopic properties of the ambient aerosols. The sparingly soluble organic coating controls hygroscopic growth, phase transitions, and microstructural rearrangement processes. The observed kinetic limitations can strongly influence the outcome of experiments performed on multi-second timescales, such as the commonly applied HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer) and CCNC (Cloud Condensation Nuclei Counter) measurements.


2008 ◽  
Vol 8 (3) ◽  
pp. 9263-9321 ◽  
Author(s):  
B. Zobrist ◽  
C. Marcolli ◽  
D. A. Pedernera ◽  
T. Koop

Abstract. A new process is presented by which water-soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulphate and mixtures of dicarboxylic acids (M5), of dicarboxylic acids and ammonium sulphate (M5AS), of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg-values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K). To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger and more hydrophobic organic molecules (≳150 g mol-1) are more likely to form glasses at intermediate to high relative humidities in the upper troposphere. Our results suggest that the water uptake of aerosols, heterogeneous chemical reactions in aerosol particles, as well as ice nucleation and ice crystal growth can be significantly impeded or even completely inhibited in organic-enriched aerosols at upper tropospheric temperatures with implications for cirrus cloud formation and upper tropospheric relative humidity.


2007 ◽  
Vol 7 (6) ◽  
pp. 17967-17974
Author(s):  
H. Kokkola ◽  
M. Vesterinen ◽  
T. Anttila ◽  
A. Laaksonen ◽  
K. E. J. Lehtinen

Abstract. In this paper, we consider the cloud drop activation of aerosol particles consisting of water soluble material and an insoluble core. Based on the Köhler theory, we derive analytical equations for the critical diameters and supersaturations of such particles. We demonstrate the use of the equations by comparing the critical supersaturations of particles composed of ammonium sulfate and insoluble substances with those of model organic particles with varying molecular sizes.


2015 ◽  
Vol 15 (6) ◽  
pp. 7837-7893
Author(s):  
E. F. Mikhailov ◽  
G. N. Mironov ◽  
C. Pöhlker ◽  
X. Chi ◽  
M. L. Krüger ◽  
...  

Abstract. In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ∼34% in the accumulation vs. ∼47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ∼70%, while efflorescence occurred at different humidities, i.e., at ∼35% RH for submicron particles vs. ∼50% RH for supermicron particles. This ∼15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ∼0.15 for the accumulation mode and ∼0.36 for the coarse mode, respectively. The obtained κv, ws for the accumulation mode is in good agreement with earlier data reported for remote sites in the Amazon rain forest (κv ≈ 0.15) and a Colorado boreal forest (κv ≈ 0.16). We used the Zdanovskii–Stokes–Robinson (ZSR) mixing rule to predict the chemical composition dependent hygroscopicity, κv, p. The obtained κv, p values overestimate the experimental FDHA-KIM-derived κv, ws by factors of 1.8 and 1.5 for the accumulation and coarse modes, respectively. This divergence can be partly explained by incomplete dissolution of the hygroscopic inorganic compounds resulting from kinetic limitations due to a sparingly soluble organic coating. The TEM and STXM-NEXAFS results indicate that aged submicron (>300 nm) and supermicron aerosol particles possess core-shell structures with an inorganic core, and are enriched in organic carbon at the mixed particle surface. The direct FDHA kinetic studies provide a bulk diffusion coefficient of water of ∼10−12 cm2 s−1 indicating a semi-solid state of the organic-rich phase leading to kinetic limitations of water uptake and release during hydration and dehydration cycles. Overall the present ZOTTO data set, obtained in the growing season, has revealed a strong influence of organic carbon on the hygroscopic properties of the ambient aerosols. The sparingly soluble organic coating controls hygroscopic growth, phase transitions, and microstructural rearrangement processes. The observed kinetic limitations can strongly influence the outcome of experiments performed on multi-second time scales, such as the commonly applied HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer) and CCNC (Cloud Condensation Nuclei Counter) measurements.


2008 ◽  
Vol 8 (17) ◽  
pp. 5221-5244 ◽  
Author(s):  
B. Zobrist ◽  
C. Marcolli ◽  
D. A. Pedernera ◽  
T. Koop

Abstract. A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5), of dicarboxylic acids and ammonium sulfate (M5AS), of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K). To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1) and more hydrophobic organic molecules are more likely to form glasses at intermediate to high relative humidities in the upper troposphere. Our results suggest that the water uptake of aerosols, heterogeneous chemical reactions in aerosol particles, as well as ice nucleation and ice crystal growth can be significantly impeded or even completely inhibited in organic-enriched aerosols at upper tropospheric temperatures with implications for cirrus cloud formation and upper tropospheric relative humidity.


Author(s):  
Matus E. Diveky ◽  
Michael J. Gleichweit ◽  
Sandra Roy ◽  
Ruth Signorell

2017 ◽  
Author(s):  
Jing Chen ◽  
Sri Hapsari Budisulistiorini ◽  
Takuma Miyakawa ◽  
Yuichi Komazaki ◽  
Mikinori Kuwata

Abstract. Diameter growth factors (GF) of 100 nm haze particles at 85 % relative humidity and chemical characteristics were simultaneously monitored at Singapore in October 2015 during a pervasive wildfire haze episode, which was caused by peatland burning in Indonesia. Non-refractory submicron particles (NR-PM1) were dominated by organics (approximating 77.1 % in total mass), whereas sulfate was the most abundant inorganic constituent (11.7 % on average). A statistical analysis of the organic mass spectra showed that most of organics (36.0 % of NR-PM1 mass) were highly oxygenated. Diurnal variations of GF, number fraction of highly hygroscopic mode particles, mass fraction of sulfate, and mass fraction of oxygenated organics (OOA) synchronized well, peaking during daytime. The mean hygroscopicity parameter (κ) of haze particles was 0.189 ± 0.087, and mean κ values of organics were 0.157 ± 0.108 (κorg, bulk organics) and 0.287 ± 0.193 (κOOA, OOA), demonstrating the important roles of both sulfate and highly oxygenated organics in hygroscopic growth of wildfire haze particles. κorg was also affected by the water-soluble organic fraction to some extent. These results show the importance of secondary formation processes in promoting water uptake properties of wildfire haze particles, including both inorganic and organic species. Further detailed size-resolved as well as molecular level chemical information of organics will be necessary for more profound exploration of water uptake by wildfire haze particles in Equatorial Asia.


Sign in / Sign up

Export Citation Format

Share Document