Optimum planar motion of a point of varying mass with a varying mass-discharge rate

1970 ◽  
Vol 6 (9) ◽  
pp. 987-990
Author(s):  
L. G. Golubova ◽  
O. F. Makarov
2019 ◽  
Vol 14 (1) ◽  
pp. 27-39 ◽  
Author(s):  
Fukashi Maeno ◽  
Setsuya Nakada ◽  
Mitsuhiro Yoshimoto ◽  
Taketo Shimano ◽  
Natsumi Hokanishi ◽  
...  

Kelud Volcano is among the most active volcanoes in Indonesia, with repeated explosive eruptions throughout its history. Here, we reconstructed the relationship between the repose period and the cumulative volume of erupted material over the past 100 years and estimated the long-term magma discharge rate and future eruptive potential and hazards. Tephra data and eruption sequences described in historical documents were used to estimate the volume and mass discharge rate. The volumes of the 1901, 1919, 1951, 1966, 1990, and 2014 eruptions were estimated as 51–296 × 106m3. The mass discharge rates were estimated to be on the order of 107kg/s for the 1919, 1951, and 2014 eruptions and the order of 106kg/s for the 1966 and 1990 eruptions. Based on a linear relationship between the repose period and cumulative erupted mass, the long-term mass discharge rate was estimated as ∼ 1.5 × 1010kg/year, explaining the features of the larger eruptions (1919, 1951, and 2014) but not those of the smaller eruptions (1966 and 1990). This estimate is relatively high compared to other typical basaltic-andesitic subduction-zone volcanoes. This result provides important insights into the evolution of magmatic systems and prediction of future eruptions at Kelud Volcano.


1999 ◽  
Vol 104 (B12) ◽  
pp. 29387-29400 ◽  
Author(s):  
Emily E. Brodsky ◽  
Hiroo Kanamori ◽  
Bradford Sturtevant

Particuology ◽  
2021 ◽  
Author(s):  
Quan Chen ◽  
Ran Li ◽  
Wengzheng Xiu ◽  
Vladimir Zivkovic ◽  
Hui Yang

2016 ◽  
Vol 121 (8) ◽  
pp. 5679-5695 ◽  
Author(s):  
Gianfranco Vulpiani ◽  
Maurizio Ripepe ◽  
Sebastien Valade

Author(s):  
Conlain Kelly ◽  
Nicholas Olsen ◽  
Dan Negrut

Abstract This study describes the implementation of a granular dynamics solver designed to run on Graphics Processing Units (GPUs). The discussion concentrates on how the Discrete Element Method (DEM) has been mapped onto the GPU architecture, the software design decisions involved in the process, and the optimizations allowed by those decisions. This solver, called Chrono::Granular, has been developed as a standalone library that can interface with other dynamics engines via triangle mesh co-simulation. A scaling analysis of the code presented herein demonstrates linear scaling with problem sizes of over two billion degrees of freedom and closing in on one billion bodies. We conclude with a study of hourglass (or hopper) mass discharge rate which compares the solver to experimental results and investigates a process for determining empirical coefficients of flow rate through simulation.


2021 ◽  
Vol 11 (12) ◽  
pp. 5675
Author(s):  
Phung Tu ◽  
Vanissorn Vimonsatit

Current silo analysis and design methods developed from Janssen’s theory focus mainly on the flow of the granules inside the silo by assuming that the overall silo structure is infinitely rigid. A silo structure during discharge is technically a time varying mass dynamic problem, where the properties of the overall silo structure and the discharge rate and material properties also contribute to the development of the load. The physics of a silo system requires equilibrium between the granules inside the silo, the silo structure as a whole and the surrounding air. The established scientific principles and experimental data require fulfilling such equilibrium to accurately predict the dynamic loads during discharge. This correspondence explains how the equilibrium between the granules inside the silo, the silo structure as a whole and the surrounding air can be achieved to better predict and control the dynamic loads generated by the silo discharge process.


2021 ◽  
Vol 377 ◽  
pp. 350-360 ◽  
Author(s):  
Xingjian Huang ◽  
Qijun Zheng ◽  
Aibing Yu ◽  
Wenyi Yan

2017 ◽  
Vol 307 ◽  
pp. 63-72 ◽  
Author(s):  
Q.J. Zheng ◽  
B.S. Xia ◽  
R.H. Pan ◽  
A.B. Yu

Author(s):  
J. Edie

In TEM image formation, the observed contrast variations within thin sections result from differential electron scattering within microregions of varying mass thickness. It is possible to utilize these electron scattering properties to obtain objective information regarding various specimen parameters (1, 2, 3).A pragmatic, empirical approach is described which enables a microscopist to perform physical measurements of thickness of thin sections and estimates of local mass, volume, density and, possibly, molecular configurations within thin sections directly in the microscope. A Faraday cage monitors the transmitted electron beam and permits measurements of electron beam intensities.


Sign in / Sign up

Export Citation Format

Share Document