Wave propagation on the surface of a heavy liquid in a basin with uneven bottom

1972 ◽  
Vol 10 (2) ◽  
pp. 181-186
Author(s):  
E. I. Bichenkov ◽  
R. M. Garipov
2018 ◽  
Vol 7 (3.28) ◽  
pp. 97
Author(s):  
Mohammad Fadhli Ahmad ◽  
Mohd Sofiyan Suliman ◽  
. .

The implementation of finite difference method is used to solve shallow water equations under the extreme conditions. The cases such as dam break and wave propagation over uneven bottom seabed are selected to test the ordinary schemes of Lax-Friederichs and Lax-Wendroff numerical schemes. The test cases include the source term for wave propagation and exclude the source term for dam break. The main aim of this paper is to revisit the application of Lax-Friederichs and Lax-Wendroff numerical schemes at simulating dam break and wave propagation over uneven bottom seabed. For the case of the dam break, the two steps of Lax-Friederichs scheme produce non-oscillation numerical results, however, suffering from some of dissipation. Moreover, the two steps of Lax-Wendroff scheme suffers a very bad oscillation. It seems that these numerical schemes cannot solve the problem at discontinuities which leads to oscillation and dissipation. For wave propagation case, those numerical schemes produce inaccurate information of free surface and velocity due to the uneven seabed profile. Therefore, finite difference is unable to model shallow water equations under uneven bottom seabed with high accuracy compared to the analytical solution.  


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Sign in / Sign up

Export Citation Format

Share Document