Role of sorption processes with the motion of polymer solutions in a porous medium

1976 ◽  
Vol 10 (3) ◽  
pp. 422-428 ◽  
Author(s):  
V. M. Entov ◽  
A. M. Polishchuk
Author(s):  
Swayamdipta Bhaduri ◽  
Pankaj Sahu ◽  
Siddhartha Das ◽  
Aloke Kumar ◽  
Sushanta K. Mitra

The phenomenon of capillary imbibition through porous media is important both due to its applications in several disciplines as well as the involved fundamental flow physics in micro-nanoscales. In the present study, where a simple paper strip plays the role of a porous medium, we observe an extremely interesting and non-intuitive wicking or imbibition dynamics, through which we can separate water and dye particles by allowing the paper strip to come in contact with a dye solution. This result is extremely significant in the context of understanding paper-based microfluidics, and the manner in which the fundamental understanding of the capillary imbibition phenomenon in a porous medium can be used to devise a paper-based microfluidic separator.


Langmuir ◽  
2003 ◽  
Vol 19 (8) ◽  
pp. 3304-3312 ◽  
Author(s):  
Javier Sanchez-Reyes ◽  
Lynden A. Archer

Author(s):  
A. Al-Zubaidi ◽  
Mubbashar Nazeer ◽  
S. Saleem ◽  
Farooq Hussain ◽  
Fayyaz Ahmad

This paper numerically simulates the nanofluid flow over a thermally expanding Riga plate. Buongiorno model for nanofluid is employed to investigate the contribution of Brownian motion and thermophoretic force on the nanoflow. Magnetohydrodynamics (MHD) of viscous nanofluid through a porous medium is characterized with the help of Darcy–Forchheimer’s model. In addition, the simultaneous effects of activation energy and chemical reaction have been incorporated. Moreover, highly nonlinear coupled differential equations are formulated which highlight the influence of viscous dissipation and heat generation. A numerical solution is achieved with the help of the Range–Kutta fourth-order (RK4) method combined with the shooting technique. Finally, the role of emerging parameters is studied via performing the numerical simulation which reveals that the momentum boundary layer of nanofluid shrinks due to the porous medium. Whereas, thermal boundary layer expands for all variables, except for the Prandtl number. Finally, mass transfer rated suffers due to Schmidt number.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 465-480 ◽  
Author(s):  
Stephane Jouenne ◽  
Guillaume Heurteux

Summary When injected at high flow rates in a porous medium, polymer solutions exhibit a resistance to flow that is a signature of chain conformation and size. For biopolymers, which exist in solution as semirigid rods, mobility reduction follows the shear-thinning behavior measured in shear flow on a rheometer. For flexible coils, such as hydrolyzed polyacrylamide (HPAM), flow thickening is observed in a porous medium, whereas bulk viscosity presents a shear-thinning behavior. This difference is the result of the complex flow experienced in the porous medium, combined with the viscoelastic properties at large strains of the solutions. In this study, we investigate the effect of physicochemical parameters such as salinity, polymer concentration, molecular weight, and degradation state on the mobility reduction in a porous medium at high flow rates. All the experiments are performed on a short-length, 4-darcy sintered ceramic core. The bell shape of the mobility-reduction curves (mobility reduction vs. flow rate) is characterized by three parameters: the onset rate of flow thickening (QC), the maximum of mobility reduction (Rmmax), and the flow rate at which this maximum occurs (Qmax). Curves are rescaled by use of the two groups, Rm/Rmmax and β×Q, where β accounts for the shift in Qmax when physicochemical conditions are varied. After rescaling, all the normalized mobility-reduction curves are superposed. We show that the two parameters Rmmax and β are not correlated with the bulk viscosity of the solutions but rather with their elasticity evaluated through screen-factor measurement. This old and rough measurement, widely used in the enhanced-oil-recovery (EOR) community to evaluate “solution elasticity,” is an indirect measurement of the extensional viscosity of polymer solutions. The pertinence and the physical meaning of this rough measurement are assessed through comparison with measurements performed on a newly developed extensional viscometer [EVROC™ (Extensional Viscometer/Rheometer On a Chip), RheoSense, Inc., San Ramon, California, USA], which consists of measuring the pressure drop when the fluid is injected through a hyperbolic contraction (in which the strain rate is constant at the centerline). A correlation of “screen factor” vs. “extensional viscosity” is obtained. These results give some insight on the behavior of polymer solutions in injectivity conditions along with a method to characterize their elastic properties from bulk measurements. Finally, the inadequacy of traditional small-strain viscoelastic measurements to characterize the elastic behavior of polymer solutions at large strain is discussed.


1997 ◽  
Vol 489 ◽  
Author(s):  
H.-G. Döbereiner ◽  
A. Lehmann ◽  
W. Goedel ◽  
O. Selchow ◽  
R. Lipowsky

AbstractWe monitor the effect of transversal membrane asymmetry on the morphology of giant uni-lamellar vesicles in sugar and polymer solutions. The shapes of fluid lipid vesicles are governed by the bending elasticity of their membrane which is characterized by the bending modulus and the spontaneous curvature of the bilayer. We present a recently developed technique for the measurement of the spontaneous curvature using quantitative phase contrast microscopy. Different mechanisms for elastic membrane asymmetry and the role of the bending energy concept for the morphology of cellular organelles are discussed.


Sign in / Sign up

Export Citation Format

Share Document