The use of difference equations for the investigation of the steady-state operating mode of a gradient extremal system having an inertial object

1971 ◽  
Vol 14 (3) ◽  
pp. 308-316
Author(s):  
A. M. Korikov

2020 ◽  
Vol 14 (1) ◽  
pp. 55-60
Author(s):  
O. N. Didmanidze ◽  
R. T. Khakimov ◽  
E. P. Parlyuk ◽  
N. A. Bol’shakov

Global car manufacturers wish to increase the number of manufactured products, reduce their cost and labor input. The choice of research areas, design and technological developments in radiator construction is an extremely important and urgent task, due to the mass production of radiators for tractors and automobiles on the one hand, and the favorable development prospects of these interrelated industries, on the other. (Research purpose) To substantiate theoretically and experimentally the use of a combined cooling system containing both aluminum and polymeric water radiators and similarly liquid-oil heat exchangers based on the four principles listed above on automobiles and tractors. (Materials and methods) The authors performed bench tests using a special wind tunnel to study the thermal and aerodynamic characteristics of a prototype tractor radiator with a polyurethane core. After reaching the steady-state operating mode of the installation, the experimental values were determined for the control and measuring instruments. (Results and discussion) The authors carried out measurements of all parameters of both coolants in series at each steady-state operating mode of the bench. They obtained the main indicators dependences (reduced heat transfer, aerodynamic and hydraulic drag) of the heat exchanger, close to the operating conditions of the vehicles. (Conclusions) A prototype MTZ-80 radiator with a polyurethane core has great prospects as a future alternative radiator. An increase by 10-15 percent in the radiator heat transfer is possible by using aluminum fi ns on the surface of the polyurethane plate. A 15-20 percent reduction in hydrodynamic resistance is achieved by increasing the diameter of the capillary throughput in a polyurethane plate and the number of plates themselves in the radiator cell.



2000 ◽  
Vol 23 (4) ◽  
pp. 261-270 ◽  
Author(s):  
B. Shi

An open problem given by Kocic and Ladas in 1993 is generalized and considered. A sufficient condition is obtained for each solution to tend to the positive steady-state solution of the systems of nonlinear Volterra difference equations of population models with diffusion and infinite delays by using the method of lower and upper solutions and monotone iterative techniques.



2009 ◽  
Vol 18 (06) ◽  
pp. 1061-1073 ◽  
Author(s):  
INNA KATZ ◽  
ALEXANDER ABRAMOVITZ ◽  
YORAM HOREN ◽  
ALON KUPERMAN ◽  
SVETLANA BRONSHTEIN

This paper offers a new approach to analyses of cycloconverter operation. The difference equations describing the cycloconverters' transient and steady-state operating regimes are derived. Theoretical predictions were validated by a computer program which calculated the load current of different cycloconverter topologies using the proposed methodology. The calculated and experimental results are compared and found to be in good agreement.



2012 ◽  
Vol 516-517 ◽  
pp. 645-659
Author(s):  
G.K. Singh ◽  
S.N. Singh ◽  
R.P. Saini

This article presents the steady-state modeling and analysis of a grid-connected six-phase induction generator for renewable energy generation powered by hydro turbine. The basis of the analysis is nodal admittance method as applied to the equivalent circuit, and used to analyze the behavior of the machine for the operating mode such as (i) when only one three-phase winding set is connected to grid, (ii) when one three-phase winding set is connected to grid and other three-phase winding set is subjected to load, and (iii) when both the three-phase winding sets are connected to grid through an interconnecting Y-/Y six-phase to three-phase transformer. Nodal admittance based matrix equations are easier to modify in order to account for mutual leakage coupling between two three-phase winding sets, core loss component, and make the analysis very easy, fast and accurate. Through analytical and practical studies, it is shown that machine can feed direct, reliable, and low cost power to grid without interface network. The analytical results are found to be in good agreement with experimental results.





Autonomous electronic circuits provide a convenient framework in which to study chaotic phenomena. These systems are easy to build, easy to measure, and easy to model using differential and difference equations. Furthermore, they operate in real time, and parameter values are readily adjusted. In this work, we discuss the nature of chaotic steady-state behaviour and describe how it manifests itself in autonomous electronic circuits. We study state space, time-and frequency-domain measurement techniques for characterizing steady-state behaviour. Because of its value as a paradigm for exploring chaos, we choose Chua’s oscillator as the vehicle for our experiments.



Author(s):  
Namik Yener ◽  
Ali Bekir Yildiz

Purpose This paper aims to present how to use the difference equations for analysis of flyback converter circuit. Design/methodology/approach Switching circuits have variable structural topologies. In every switched-mode, they have different dynamics and different equations. First, the exact equivalent circuit of flyback converter, then, set of difference equations are obtained. The flyback converter has a nonlinear structure; however, the presented technique allows the circuit equations to be linear. The transient-state and steady-state analysis of flyback converter, one of popular switching circuits, are carried out by using difference-equations. Findings The proposed analysis method does not contain any numerical approximation and the results are in the form of exact solution. Another superiority of the method is that the desired instantaneous values can be obtained directly, the simulation does not need to be started from the beginning. Numerical results agree well with the theoretical results of flyback converter. The simulation results obtained by using the proposed method and Matlab-based results are compared. Originality/value This paper contributes a different mathematical background for analysis of switching converters to the literature.



2022 ◽  
Vol 2150 (1) ◽  
pp. 012015
Author(s):  
G I Nikitina ◽  
A N Kozlov ◽  
M V Penzik

Abstract This paper describes an experimental study of the operation of an internal combustion engine of fueled by a low-calorific value gas. The main operating parameters of low-power ICE were determined. Efficiency was also evaluated when the ICE was converted to operate on producer gas. In the experiment, it was shown that the engine reached a stable operating mode under load and data on the temperature and exhaust gases composition were obtained. According to our estimates, in the steady-state operation of the internal combustion engine with a load, the efficiency factor was about 22 %. When using the model gas, the from generator output power, was about 30-40 % of the nominal value, under variable load conditions. However, it was found that in steady-state operation, the power of the internal combustion engine was 40-55% of the nominal value.



Sign in / Sign up

Export Citation Format

Share Document