The numerical study of combined jet stream and external flow allowing for the effect of boundary layers and the turbulent mixing zone

1985 ◽  
Vol 19 (5) ◽  
pp. 803-810
Author(s):  
N. L. Efremov ◽  
R. K. Tagirov
1965 ◽  
Vol 16 (4) ◽  
pp. 377-387
Author(s):  
J. M. Forde

SummaryAn integral part of the study of supersonic combustion is the investigation of supersonic turbulent mixing of dissimilar fluids. Experimental results obtained in the course of investigating the turbulent mixing zone between supersonic streams of CO3 and air are presented. Good correlation between observation and available theories has been obtained in terms of the parameter ξ=σy/x. The correlating parameter σ defines the spreading rate of the mixing zone. The available theories, though not developed for these specific conditions, are shown to be applicable to the turbulent mixing of supersonic streams.The correlating parameter σ was determined for three different combinations of internal and external flow Mach numbers. The values found for σ were 18, 16·3, 15·3 for constant external Mach number 1·62 and internal Mach number 1·62, 1·53, 1·47 respectively. The magnitudes of σ showed the expected trend, that is the higher value implies the least divergence of the mixing boundaries.The reasonable agreement with experiment and the simplicity of application of the momentum integral form of solution would appear to favour the use of this approach for the theoretical prediction of the mixing conditions.


2020 ◽  
pp. 42-47
Author(s):  
SERGIY RYZHKOV

Fractonal efciency of aerosol collecton in the boundary layers at diferent inital speeds of disperse multphase fow along a fat surface with the jet stream is determined.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


2017 ◽  
Vol 95 (8) ◽  
pp. 671-681 ◽  
Author(s):  
Tao Wang ◽  
Gang Tao ◽  
Jingsong Bai ◽  
Ping Li ◽  
Bing Wang ◽  
...  

The dynamical behavior of Richtmyer–Meshkov instability-induced turbulent mixing under multiple shock interactions is investigated by large-eddy simulation. After the initial shockwave–interface interaction, the transmitted wave reverberates between the accelerated interface and the end-wall of the shock tube to form a process of multiple shock interactions. The turbulent mixing zone grows in a different manner under each of the impingements. After the initial shock, it grows as a power law of time. After the reshock and the impingement of the reflected rarefaction wave, it grows with time as a different negative exponential law. When the impingement of the reflected compression wave completes, it grows approximately in a linear fashion. The statistical quantities in the turbulent mixing zone evolve with time in a similar way under multiple impingements, and after the impingement of the reflected compression wave, they all decay asymptotically. Therefore, the turbulent mixing zone behaves in a statistically self-similar pattern. Even though the impingements of different waves result in different abrupt changes of the characteristic scale parameters of mixing turbulence, as a whole, the characteristic scales present a feature of growth, and the characteristic-scale Reynolds numbers present a feature of decay. The mixing flow is continuously anisotropic, yet the anisotropy weakens gradually. Therefore the development of turbulent mixing presents a trend of isotropy.


Author(s):  
Elizaveta Ivanova ◽  
Berthold Noll ◽  
Peter Griebel ◽  
Manfred Aigner ◽  
Khawar Syed

Turbulent mixing and autoignition of H2-rich fuels at relevant reheat combustor operating conditions are investigated in the present numerical study. The flow configuration under consideration is a fuel jet perpendicularly injected into a crossflow of hot flue gas (T > 1000K, p = 15bar). Based on the results of the experimental study for the same flow configuration and operating conditions two different fuel blends are chosen for the numerical simulations. The first fuel blend is a H2/natural gas/N2 mixture at which no autoignition events were observed in the experiments. The second fuel blend is a H2/N2 mixture at which autoignition in the mixing section occurred. First, the non-reacting flow simulations are performed for the H2/natural gas/N2 mixture in order to compare the accuracy of different turbulence modeling methods. Here the steady-state Reynolds-averaged Navier-Stokes (RANS) as well as the unsteady scale-adaptive simulation (SAS) turbulence modeling methods are applied. The velocity fields obtained in both simulations are directly validated against experimental data. The SAS method shows better agreement with the experimental results. In the second part of the present work the autoignition of the H2/N2 mixture is numerically studied using the 9-species 21-steps reaction mechanism of O’Conaire et al. [1]. As in the reference experiments, autoignition can be observed in the simulations. Influences of the turbulence modeling as well as of the hot flue gas temperature are investigated. The onset and the propagation of the ignition kernels are studied based on the SAS modeling results. The obtained numerical results are discussed and compared with data from experimental autoignition studies.


2015 ◽  
Vol 779 ◽  
pp. 411-431 ◽  
Author(s):  
T. Oggian ◽  
D. Drikakis ◽  
D. L. Youngs ◽  
R. J. R. Williams

Both experiments and numerical simulations pertinent to the study of self-similarity in shock-induced turbulent mixing often do not cover sufficiently long times for the mixing layer to become developed in a fully turbulent manner. When the Mach number of the flow is sufficiently low, numerical simulations based on the compressible flow equations tend to become less accurate due to inherent numerical cancellation errors. This paper concerns a numerical study of the late-time behaviour of a single-shocked Richtmyer–Meshkov instability (RMI) and the associated compressible turbulent mixing using a new technique that addresses the above limitation. The present approach exploits the fact that the RMI is a compressible flow during the early stages of the simulation and incompressible at late times. Therefore, depending on the compressibility of the flow field, the most suitable model, compressible or incompressible, can be employed. This motivates the development of a hybrid compressible–incompressible solver that removes the low-Mach-number limitations of the compressible solvers, thus allowing numerical simulations of late-time mixing. Simulations have been performed for a multi-mode perturbation at the interface between two fluids of densities corresponding to an Atwood number of 0.5, and results are presented for the development of the instability, mixing parameters and turbulent kinetic energy spectra. The results are discussed in comparison with previous compressible simulations, theory and experiments.


Author(s):  
V.A. Zhmaylo ◽  
O.G. Sin'kova ◽  
V.N. Sofronov ◽  
V.P. Statsenko ◽  
Yu.V. Yanilkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document