A two-dimensional problem involving motion of a body close to a vertical wall

1969 ◽  
Vol 5 (12) ◽  
pp. 1324-1329
Author(s):  
V. Yu. Mazur
2016 ◽  
Vol 11 (1) ◽  
pp. 119-126 ◽  
Author(s):  
A.A. Aganin ◽  
N.A. Khismatullina

Numerical investigation of efficiency of UNO- and TVD-modifications of the Godunov method of the second order accuracy for computation of linear waves in an elastic body in comparison with the classical Godunov method is carried out. To this end, one-dimensional cylindrical Riemann problems are considered. It is shown that the both modifications are considerably more accurate in describing radially converging as well as diverging longitudinal and shear waves and contact discontinuities both in one- and two-dimensional problem statements. At that the UNO-modification is more preferable than the TVD-modification because exact implementation of the TVD property in the TVD-modification is reached at the expense of “cutting” solution extrema.


Author(s):  
K. M. Akyuzlu ◽  
Y. Pavri ◽  
A. Antoniou

A two-dimensional, mathematical model is adopted to investigate the development of buoyancy driven circulation patterns and temperature contours inside a rectangular enclosure filled with a compressible fluid (Pr=1.0). One of the vertical walls of the enclosure is kept at a higher temperature then the opposing vertical wall. The top and the bottom of the enclosure are assumed insulated. The physics based mathematical model for this problem consists of conservation of mass, momentum (two-dimensional Navier-Stokes equations) and energy equations for the enclosed fluid subjected to appropriate boundary conditions. The working fluid is assumed to be compressible through a simple ideal gas relation. The governing equations are discretized using second order accurate central differencing for spatial derivatives and first order forward finite differencing for time derivatives where the computation domain is represented by a uniform orthogonal mesh. The resulting nonlinear equations are then linearized using Newton’s linearization method. The set of algebraic equations that result from this process are then put into a matrix form and solved using a Coupled Modified Strongly Implicit Procedure (CMSIP) for the unknowns (primitive variables) of the problem. A numerical experiment is carried out for a benchmark case (driven cavity flow) to verify the accuracy of the proposed solution procedure. Numerical experiments are then carried out using the proposed compressible flow model to simulate the development of the buoyancy driven circulation patterns for Rayleigh numbers between 103 and 105. Finally, an attempt is made to determine the effect of compressibility of the working fluid by comparing the results of the proposed model to that of models that use incompressible flow assumptions together with Boussinesq approximation.


2021 ◽  
Author(s):  
Fatimat Kh. Kudayeva ◽  
Aslan Kh. Zhemukhov ◽  
Aslan L. Nagorov ◽  
Arslan A. Kaygermazov ◽  
Diana A. Khashkhozheva ◽  
...  

2017 ◽  
Vol 74 (3) ◽  
pp. 801-807 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka ◽  
Thomas Spengler

Abstract Inversion of potential vorticity density with absolute vorticity and function η is explored in η coordinates. This density is shown to be the component of absolute vorticity associated with the vertical vector of the covariant basis of η coordinates. This implies that inversion of in η coordinates is a two-dimensional problem in hydrostatic flow. Examples of inversions are presented for (θ is potential temperature) and (p is pressure) with satisfactory results for domains covering the North Pole. The role of the boundary conditions is investigated and piecewise inversions are performed as well. The results shed new light on the interpretation of potential vorticity inversions.


Sign in / Sign up

Export Citation Format

Share Document