Feynman integral in the phase space and symbols of infinite-dimensional pseudodifferential operators

1985 ◽  
Vol 37 (5) ◽  
pp. 404-409 ◽  
Author(s):  
A. Yu. Khrennikov
Author(s):  
S. ALBEVERIO ◽  
G. GUATTERI ◽  
S. MAZZUCCHI

The Belavkin equation, describing the continuous measurement of the momentum of a quantum particle, is studied. The existence and uniqueness of its solution is proved via analytic tools. A stochastic characteristics method is applied. A rigorous representation of the solution by means of an infinite dimensional oscillatory integral (Feynman path integral) defined on the phase space is also given.


1995 ◽  
Vol 07 (03) ◽  
pp. 431-441 ◽  
Author(s):  
SHU NAKAMURA

A generalization of the method of martinez on phase space tunneling is discussed. In particular, the key estimate is formulated for a class of ħ-pseudodifferential operators.


2010 ◽  
Vol 25 (06) ◽  
pp. 1253-1266
Author(s):  
TAMAR FRIEDMANN

We construct a classical dynamical system whose phase space is a certain infinite-dimensional Grassmannian manifold, and propose that it is equivalent to the large N limit of two-dimensional QCD with an O (2N+1) gauge group. In this theory, we find that baryon number is a topological quantity that is conserved only modulo 2. We also relate this theory to the master field approach to matrix models.


1968 ◽  
Vol 5 (2) ◽  
pp. 375-386 ◽  
Author(s):  
J. G. Gilson
Keyword(s):  

The relation between “forward” and “backward” definitions of quantum velocity is discussed. A connection between the Feynman Integral and Wigner's phase space distributions which was noted in an earlier paper is explored further and some new and useful formulae are derived.


The Hamiltonian description of massless spin zero- and one-fields in Minkowski space is first recast in a way that refers only to null infinity and fields thereon representing radiative modes. With this framework as a guide, the phase space of the radiative degrees of freedom of the gravitational field (in exact general relativity) is introduced. It has the structure of an infinite-dimensional affine manifold (modelled on a Fréchet space) and is equipped with a continuous, weakly non-degenerate symplectic tensor field. The action of the Bondi-Metzner-Sachs group on null infinity is shown to induce canonical transformations on this phase space. The corresponding Hamiltonians – i. e. generating functions – are computed and interpreted as fluxes of supermomentum and angular momentum carried away by gravitational waves. The discussion serves three purposes: it brings out, via symplectic methods, the universality of the interplay between symmetries and conserved quantities; it sheds new light on the issue of angular momentum of gravitational radiation; and, it suggests a new approach to the quantization of the ‘true’ degrees of freedom of the gravitational field.


1994 ◽  
Vol 09 (32) ◽  
pp. 5801-5820 ◽  
Author(s):  
E. GOZZI ◽  
M. REUTER

We investigate the algebraic properties of the quantum counterpart of the classical canonical transformations using the symbol calculus approach to quantum mechanics. In this framework we construct a set of pseudodifferential operators which act on the symbols of operators, i.e. on functions defined over phase space. They act as operatorial left and right multiplication and form a W∞×W∞ algebra which contracts to its diagonal subalgebra in the classical limit. We also describe the Gel’fand-Naimark-Segal (GNS) construction in this language and show that the GNS representation space (a doubled Hilbert space) is closely related to the algebra of functions over phase space equipped with the star product of the symbol calculus.


1995 ◽  
Vol 10 (01) ◽  
pp. 65-88 ◽  
Author(s):  
M. REUTER

We investigate spinor fields on phase spaces. Under local frame rotations they transform according to the (infinite-dimensional, unitary) metaplectic representation of Sp(2N), which plays a role analogous to the Lorentz group. We introduce a one-dimensional nonlinear sigma model whose target space is the phase space under consideration. The global anomalies of this model are analyzed, and it is shown that its fermionic partition function is anomalous exactly if the underlying phase space is not a spin manifold, i.e. if metaplectic spinor fields cannot be introduced consistently. The sigma model is constructed by giving a path integral representation to the Lie transport of spinors along the Hamiltonian flow.


2016 ◽  
Vol 82 (3) ◽  
Author(s):  
J. W. Burby

Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low orders. These unphysical modes, which may be rapidly oscillating, damped or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model’s initial value problem. In short, the (infinite dimensional) system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, ‘renormalized’ variational approach to drift kinetic theory that manifestly respects the parent model’s initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase-space Lagrangian instead of the usual ‘field$+$particle’ Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dimensional toy model of high-order variational drift kinetics; the analogous full-on drift kinetic story is discussed subsequently. The renormalized drift kinetic system, while variational and just as formally accurate as conventional formulations, does not support the troublesome rapidly varying modes.


Sign in / Sign up

Export Citation Format

Share Document