A combinatorial formula for Kazhdan-Lusztig polynomials

1994 ◽  
Vol 118 (1) ◽  
pp. 371-394 ◽  
Author(s):  
Francesco Brenti
2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Francesco Brenti ◽  
Fabrizio Caselli

International audience We obtain a nonrecursive combinatorial formula for the Kazhdan-Lusztig polynomials which holds in complete generality and which is simpler and more explicit than any existing one, and which cannot be linearly simplified. Our proof uses a new basis of the peak subalgebra of the algebra of quasisymmetric functions. On montre une formule combinatoire pour les polynômes de Kazhdan-Lusztig qui est valable en toute généralité. Cette formule est plus simple et plus explicite que toutes les autres formules connues; de plus, elle ne peut pas être simplifiée linéairement. La preuve utilise une nouvelle base pour la sous-algèbre des sommets de l’algèbre des fonctions quasi-symmetriques.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Kyungyong Lee ◽  
George D. Nasr ◽  
Jamie Radcliffe

We present a combinatorial formula using skew Young tableaux for the coefficients of Kazhdan-Lusztig polynomials for sparse paving matroids. These matroids are known to be logarithmically almost all matroids, but are conjectured to be almost all matroids. We also show the positivity of these coefficients using our formula. In special cases, such as uniform matroids, our formula has a nice combinatorial interpretation.


10.37236/6120 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Max Wakefield

For a representation of a matroid the combinatorially defined Kazhdan-Lusztig polynomial computes the intersection cohomology of the associated reciprocal plane. However, these polynomials are difficult to compute and there are numerous open conjectures about their structure. For example, it is unknown whether or not the coefficients are non-negative for non-representable matroids. The main result in this note is a combinatorial formula for the coefficients of these matroid Kazhdan-Lusztig polynomials in terms of flag Whitney numbers. This formula gives insight into some vanishing behavior of the matroid Kazhdan-Lusztig polynomials.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Brant Jones

International audience The Kazhdan-Lusztig polynomials for finite Weyl groups arise in representation theory as well as the geometry of Schubert varieties. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar has given a framework, which generally involves recursion, to express the Kazhdan-Lusztig polynomials in a very attractive form. We use a new kind of pattern-avoidance that can be defined for general Coxeter groups to characterize when Deodhar's algorithm yields a non-recursive combinatorial formula for Kazhdan-Lusztig polynomials $P_{x,w}(q)$ of finite Weyl groups. This generalizes results of Billey-Warrington which identified the $321$-hexagon-avoiding permutations, and Fan-Green which identified the fully-tight Coxeter groups. We also show that the leading coefficient known as $\mu (x,w)$ for these Kazhdan―Lusztig polynomials is always either $0$ or $1$. Finally, we generalize the simple combinatorial formula for the Kazhdan―Lusztig polynomials of the $321$-hexagon-avoiding permutations to the case when $w$ is hexagon avoiding and maximally clustered. Les polynômes de Kazhdan-Lusztig $P_{x,w}(q)$ des groupes de Weyl finis apparaissent en théorie des représentations, ainsi qu’en géométrie des variétés de Schubert. Il a été démontré peu après leur introduction qu’ils avaient des coefficients entiers positifs, mais on ne connaît toujours pas d’interprétation combinatoire simple de cette propriété dans le cas général. Deodhar a proposé un cadre donnant un algorithme, en général récursif, calculant des formules attractives pour les polynômes de Kazhdan-Lusztig. Billey-Warrington ont démontré que cet algorithme est non récursif lorsque$w$ évite les hexagones et les $321$ et qu’il donne des formules combinatoires simples. Nous introduisons une notion d’évitement de schémas dansles groupes de Coxeter quelconques nous permettant de généraliser les résultats de Billey-Warrington à tout groupe de Weyl fini. Nous montrons que le coefficient de tête $\mu (x,w)$ de ces polynômes de Kazhdan-Lusztig est toujours $0$ ou $1$. Cela généralise aussi des résultats de Fan-Greenqui identifient les groupes de Coxeter complètement serrés. Enfin, en type $A$, nous obtenons une classe plus large de permutations évitant la récursion.


10.37236/9435 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Kyungyong Lee ◽  
George D. Nasr ◽  
Jamie Radcliffe

Let $\rho$ be a non-negative integer. A $\rho$-removed uniform matroid is a matroid obtained from a uniform matroid by removing a collection of $\rho$ disjoint bases. We present a combinatorial formula for Kazhdan–Lusztig polynomials of $\rho$-removed uniform matroids, using skew Young Tableaux. Even for uniform matroids, our formula is new, gives manifestly positive integer coefficients, and is more manageable than known formulas.


Author(s):  
Leonardo Patimo

Abstract We propose a combinatorial interpretation of the coefficient of $q$ in Kazhdan–Lusztig polynomials and we prove it for finite simply-laced Weyl groups.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2008 ◽  
Vol 130 (2) ◽  
pp. 359-383 ◽  
Author(s):  
James. Haglund ◽  
Mark D. Haiman ◽  
N. Loehr

1998 ◽  
Vol 3 (4) ◽  
pp. 321-336 ◽  
Author(s):  
I. B. Frenkel ◽  
M. G. Khovanov ◽  
A. A. Kirillov

Sign in / Sign up

Export Citation Format

Share Document