scholarly journals Deodhar Elements in Kazhdan-Lusztig Theory

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Brant Jones

International audience The Kazhdan-Lusztig polynomials for finite Weyl groups arise in representation theory as well as the geometry of Schubert varieties. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar has given a framework, which generally involves recursion, to express the Kazhdan-Lusztig polynomials in a very attractive form. We use a new kind of pattern-avoidance that can be defined for general Coxeter groups to characterize when Deodhar's algorithm yields a non-recursive combinatorial formula for Kazhdan-Lusztig polynomials $P_{x,w}(q)$ of finite Weyl groups. This generalizes results of Billey-Warrington which identified the $321$-hexagon-avoiding permutations, and Fan-Green which identified the fully-tight Coxeter groups. We also show that the leading coefficient known as $\mu (x,w)$ for these Kazhdan―Lusztig polynomials is always either $0$ or $1$. Finally, we generalize the simple combinatorial formula for the Kazhdan―Lusztig polynomials of the $321$-hexagon-avoiding permutations to the case when $w$ is hexagon avoiding and maximally clustered. Les polynômes de Kazhdan-Lusztig $P_{x,w}(q)$ des groupes de Weyl finis apparaissent en théorie des représentations, ainsi qu’en géométrie des variétés de Schubert. Il a été démontré peu après leur introduction qu’ils avaient des coefficients entiers positifs, mais on ne connaît toujours pas d’interprétation combinatoire simple de cette propriété dans le cas général. Deodhar a proposé un cadre donnant un algorithme, en général récursif, calculant des formules attractives pour les polynômes de Kazhdan-Lusztig. Billey-Warrington ont démontré que cet algorithme est non récursif lorsque$w$ évite les hexagones et les $321$ et qu’il donne des formules combinatoires simples. Nous introduisons une notion d’évitement de schémas dansles groupes de Coxeter quelconques nous permettant de généraliser les résultats de Billey-Warrington à tout groupe de Weyl fini. Nous montrons que le coefficient de tête $\mu (x,w)$ de ces polynômes de Kazhdan-Lusztig est toujours $0$ ou $1$. Cela généralise aussi des résultats de Fan-Greenqui identifient les groupes de Coxeter complètement serrés. Enfin, en type $A$, nous obtenons une classe plus large de permutations évitant la récursion.

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Pietro Mongelli

International audience We give closed combinatorial product formulas for Kazhdan–Lusztig poynomials and their parabolic analogue of type $q$ in the case of boolean elements, introduced in [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], in Coxeter groups whose Coxeter graph is a tree. Such formulas involve Catalan numbers and use a combinatorial interpretation of the Coxeter graph of the group. In the case of classical Weyl groups, this combinatorial interpretation can be restated in terms of statistics of (signed) permutations. As an application of the formulas, we compute the intersection homology Poincaré polynomials of the Schubert varieties of boolean elements. Nous donnons des formules combinatoires pour les polynômes de Kazhdan-Lusztig et leurs analogues paraboliques de type $q$ pour les éléments booléens, introduite dans [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], dans les groupes de Coxeter dont le graphe de Coxeter est un arbre. Ces formules utilisent les nombres de Catalan et une interprétation combinatoire des graphes du groupe de Coxeter. Dans le cas des groupes de Weyl classiques, cette interprétation combinatoire peut être reformulée en termes de statistiques de permutations avec signe. Avec ces formules, on peut calculer le polynôme de l’intersection homologie de Poincaré pour la variété de Schubert de éléments booléens.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Francesco Brenti ◽  
Fabrizio Caselli

International audience We obtain a nonrecursive combinatorial formula for the Kazhdan-Lusztig polynomials which holds in complete generality and which is simpler and more explicit than any existing one, and which cannot be linearly simplified. Our proof uses a new basis of the peak subalgebra of the algebra of quasisymmetric functions. On montre une formule combinatoire pour les polynômes de Kazhdan-Lusztig qui est valable en toute généralité. Cette formule est plus simple et plus explicite que toutes les autres formules connues; de plus, elle ne peut pas être simplifiée linéairement. La preuve utilise une nouvelle base pour la sous-algèbre des sommets de l’algèbre des fonctions quasi-symmetriques.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Christopher J. Hillar ◽  
Lionel Levine ◽  
Darren Rhea

International audience We study equations in groups $G$ with unique $m$-th roots for each positive integer $m$. A word equation in two letters is an expression of the form$ w(X,A) = B$, where $w$ is a finite word in the alphabet ${X,A}$. We think of $A,B ∈G$ as fixed coefficients, and $X ∈G$ as the unknown. Certain word equations, such as $XAXAX=B$, have solutions in terms of radicals: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, while others such as $X^2 A X = B$ do not. We obtain the first known infinite families of word equations not solvable by radicals, and conjecture a complete classification. To a word w we associate a polynomial $P_w ∈ℤ[x,y]$ in two commuting variables, which factors whenever $w$ is a composition of smaller words. We prove that if $P_w(x^2,y^2)$ has an absolutely irreducible factor in $ℤ[x,y]$, then the equation $w(X,A)=B$ is not solvable in terms of radicals. Nous étudions des équations dans les groupes $G$ avec les $m$-th racines uniques pour chaque nombre entier positif m. Une équation de mot dans deux lettres est une expression de la forme $w(X, A) = B$, où $w$ est un mot fini dans l'alphabet ${X, A}$. Nous pensons $A, B ∈G$ en tant que coefficients fixes, et $X ∈G$ en tant que inconnu. Certaines équations de mot, telles que $XAXAX=B$, ont des solutions en termes de radicaux: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, alors que d'autres tel que $X^2 A X = B$ ne font pas. Nous obtenons les familles infinies d'abord connues des équations de mot non solubles par des radicaux, et conjecturons une classification complété. Á un mot $w$ nous associons un polynôme $P_w ∈ℤ[x, y]$ dans deux variables de permutation, qui factorise toutes les fois que $w$ est une composition de plus petits mots. Nous montrons que si $P_w(x^2, y^2)$ a un facteur absolument irréductible dans $ℤ[x, y]$, alors l'équation $w(X, A)=B$ n'est pas soluble en termes de radicaux.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Joel Brewster Lewis

International audience We give bijective proofs of pattern-avoidance results for a class of permutations generalizing alternating permutations. The bijections employed include a modified form of the RSK insertion algorithm and recursive bijections based on generating trees. As special cases, we show that the sets $A_{2n}(1234)$ and $A_{2n}(2143)$ are in bijection with standard Young tableaux of shape $\langle 3^n \rangle$. Alternating permutations may be viewed as the reading words of standard Young tableaux of a certain skew shape. In the last section of the paper, we study pattern avoidance in the reading words of standard Young tableaux of any skew shape. We show bijectively that the number of standard Young tableaux of shape $\lambda / \mu$ whose reading words avoid $213$ is a natural $\mu$-analogue of the Catalan numbers. Similar results for the patterns $132$, $231$ and $312$. Nous présentons des preuves bijectives de résultats pour une classe de permutations à motifs exclus qui généralisent les permutations alternantes. Les bijections utilisées reposent sur une modification de l'algorithme d'insertion "RSK" et des bijections récursives basées sur des arbres de génération. Comme cas particuliers, nous montrons que les ensembles $A_{2n}(1234)$ et $A_{2n}(2143)$ sont en bijection avec les tableaux standards de Young de la forme $\langle 3^n \rangle$. Une permutation alternante peut être considérée comme le mot de lecture de certain skew tableau. Dans la dernière section de l'article, nous étudions l'évitement des motifs dans les mots de lecture de skew tableaux généraux. Nous montrons bijectivement que le nombre de tableaux standards de forme $\lambda / \mu$ dont les mots de lecture évitent $213$ est un $\mu$-analogue naturel des nombres de Catalan. Des résultats analogues sont valables pour les motifs $132$, $231$ et $312$.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Chris Berg ◽  
Franco Saliola ◽  
Luis Serrano

International audience We prove that the Lam-Shimozono ``down operator'' on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of ``near rectangles'' in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of the corresponding k-Littlewood–Richardson coefficients. Nous montrons que l’opérateur ``down'', défini par Lam et Shimozono sur le groupe de Weyl affine, induit une dérivation de la sous-algèbre affine de Fomin-Stanley de l'algèbre affine de nilCoxeter. Nous employons cette dérivation pour vérifier une conjecture de Berg, Bergeron, Pon et Zabrocki sur l'expansion des k-fonctions de Schur indexées par les partitions qui sont ``presque rectangles''. Par conséquent, nous obtenons une interprétation combinatoire des k-coefficients de Littlewood–Richardson correspondants.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Henri Mühle ◽  
Nathan Williams

International audience We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinumerous. Furthermore, the restriction of weak order on the parabolic quotient to the parabolic 231-avoiding permutations is a lattice quotient. Lastly, we suggest how to extend these constructions to all Coxeter groups. Nous présentons une généralisation du treillis de Tamari aux quotients paraboliques du groupe symétrique. Plus précisément, nous généralisons les notions de permutations qui évitent le motif 231, les partitions non-croisées, et les partitions non-emboîtées aux quotients paraboliques, et nous montrons de façon bijective que ces ensembles sont équipotents. En restreignant l’ordre faible du quotient parabolique aux permutations paraboliques qui évitent le motif 231, on obtient un quotient de treillis d’ordre faible. Enfin, nous suggérons comment étendre ces constructions à tous les groupes de Coxeter.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Suho Oh ◽  
Hwanchul Yoo

International audience We link Schubert varieties in the generalized flag manifolds with hyperplane arrangements. For an element of a Weyl group, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only if the Schubert variety is rationally smooth. Nous relions des variétés de Schubert dans le variété flag généralisée avec des arrangements des hyperplans. Pour un élément dún groupe de Weyl, nous construisons un certain arrangement graphique des hyperplans. Nous montrons que la fonction génératrice pour les régions de cet arrangement coincide avec le polynome de Poincaré de la variété de Schubert correspondante si et seulement si la variété de Schubert est rationnellement lisse.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Nantel Bergeron ◽  
Cesar Ceballos ◽  
Jean-Philippe Labbé

International audience We present complete simplicial fan realizations of any spherical subword complex of type $A_n$ for $n\leq 3$. This provides complete simplicial fan realizations of simplicial multi-associahedra $\Delta_{2k+4,k}$, whose facets are in correspondence with $k$-triangulations of a convex $(2k+4)$-gon. This solves the first open case of the problem of finding fan realizations where polytopality is not known. The techniques presented in this paper work for all finite Coxeter groups and we hope that they will be useful to construct fans realizing subword complexes in general. In particular, we present fan realizations of two previously unknown cases of subword complexes of type $A_4$, namely the multi-associahedra $\Delta_{9,2}$ and $\Delta_{11,3}$. Nous construisons des éventails simpliciaux complets ayant la combinatoire des complexes de sous-mots de type $A_n$ pour $n\leq 3$. Par conséquent, nous obtenons des constructions d’éventails des multi-associaèdres $\Delta_{2k+4,k}$, dont les facettes correspondent aux $k$-triangulations d’un $(2k+4)$-gone. Cette construction confirme l’existence d’éventails ayant la combinatoire du multi-associaèdres pour une famille dont la polytopalité n’est pas confirmée. Les techniques utilisées fonctionnent pour tous les groupes de Coxeter et nous espérons qu’elles seront utiles afin de construire des éventails réalisant les complexes de sous-mots en général. En particulier, nous présentons des éventails pour deux complexes de sous-mots de type $A_4$ dont l’existence était inconnue: les multi-associaèdres $\Delta_{9,2}$ et $\Delta_{11,3}$.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sophie Burrill ◽  
Marni Mishna ◽  
Jacob Post

International audience We introduce $k$-crossings and $k$-nestings of permutations. We show that the crossing number and the nesting number of permutations have a symmetric joint distribution. As a corollary, the number of $k$-noncrossing permutations is equal to the number of $k$-nonnesting permutations. We also provide some enumerative results for $k$-noncrossing permutations for some values of $k$. Nous introduisons les $k$-chevauchement d'arcs et les $k$-empilements d'arcs de permutations. Nous montrons que l'index de chevauchement et l'index de empilement ont une distribution conjointe symétrique pour les permutations de taille $n$. Comme corollaire, nous obtenons que le nombre de permutations n'ayant pas un $k$-chevauchement est égal au nombre de permutations n'ayant un $k$-empilement. Nous fournissons également quelques résultats énumératifs.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Avinash J. Dalal ◽  
Jennifer Morse

International audience We give a new description of the Pieri rule for $k$-Schur functions using the Bruhat order on the affine type-$A$ Weyl group. In doing so, we prove a new combinatorial formula for representatives of the Schubert classes for the cohomology of affine Grassmannians. We show how new combinatorics involved in our formulas gives the Kostka-Foulkes polynomials and discuss how this can be applied to study the transition matrices between Hall-Littlewood and $k$-Schur functions. Nous présentons une nouvelle description, issue de l'ordre de Bruhat du groupe de Weyl affine de type $A$, de la règle de Pieri pour les fonctions $k$-Schur. Ce faisant, nous obtenons une nouvelle formule combinatoire pour les représentants des classes de Schubert de la cohomologie des Grassmannienne affines. Nous décrivons aussi comment notre approche permet d'obtenir les polynômes de Kostka-Foulkes et comment elle peut être appliquée à l’étude des matrices de transition entre les polynômes de Hall-Littlewood et les fonctions $k$-Schur.


Sign in / Sign up

Export Citation Format

Share Document