A Global Approximation Theorem for Meyer-K�nig and Zeller operators

1978 ◽  
Vol 160 (3) ◽  
pp. 195-206 ◽  
Author(s):  
Michael Becker ◽  
Rolf J. Nessel
Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 316 ◽  
Author(s):  
Hari Srivastava ◽  
Faruk Özger ◽  
S. Mohiuddine

We construct Stancu-type Bernstein operators based on Bézier bases with shape parameter λ ∈ [ - 1 , 1 ] and calculate their moments. The uniform convergence of the operator and global approximation result by means of Ditzian-Totik modulus of smoothness are established. Also, we establish the direct approximation theorem with the help of second order modulus of smoothness, calculate the rate of convergence via Lipschitz-type function, and discuss the Voronovskaja-type approximation theorems. Finally, in the last section, we construct the bivariate case of Stancu-type λ -Bernstein operators and study their approximation behaviors.


Filomat ◽  
2004 ◽  
pp. 27-32 ◽  
Author(s):  
Zoltan Finta

Direct local and global estimates are established for Bernstein - type operators using Ditzian - Totik modulus of smoothness of second order.


Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2611-2623 ◽  
Author(s):  
Trapti Neer ◽  
P.N. Agrawal

In this paper, we construct a genuine family of Bernstein-Durrmeyer type operators based on Polya basis functions. We establish some moment estimates and the direct results which include global approximation theorem in terms of classical modulus of continuity, local approximation theorem in terms of the second order Ditizian-Totik modulus of smoothness, Voronovskaya-type asymptotic theorem and a quantitative estimate of the same type. Lastly, we study the approximation of functions having a derivative of bounded variation.


2017 ◽  
Vol 33 (1) ◽  
pp. 73-86
Author(s):  
TRAPTI NEER ◽  
◽  
ANA MARIA ACU ◽  
P. N. AGRAWAL ◽  
◽  
...  

In this paper we introduce the Bezier variant of genuine-Durrmeyer type operators having Polya basis functions. We give a global approximation theorem in terms of second order modulus of continuity, a direct approximation theorem by means of the Ditzian-Totik modulus of smoothness and a Voronovskaja type theorem by using the Ditzian-Totik modulus of smoothness. The rate of convergence for functions whose derivatives are of bounded variation is obtained. Further, we show the rate of convergence of these operators to certain functions by illustrative graphics using the Maple algorithms.


2018 ◽  
Vol 11 (4) ◽  
pp. 958-975 ◽  
Author(s):  
Alok Kumar ◽  
Dipti Tapiawala ◽  
Lakshmi Narayan Mishra

In this note, we study approximation properties of a family of linear positive operators and establish asymptotic formula, rate of convergence, local approximation theorem, global approximation theorem, weighted approximation theorem, and better approximation for this family of linear positive operators.


2010 ◽  
Vol 47 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Fadime Dirik ◽  
Oktay Duman ◽  
Kamil Demirci

In the present work, using the concept of A -statistical convergence for double real sequences, we obtain a statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B -continuous functions on a compact subset of the real line. Furthermore, we display an application which shows that our new result is stronger than its classical version.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3749-3760 ◽  
Author(s):  
Ali Karaisa ◽  
Uğur Kadak

Upon prior investigation on statistical convergence of fuzzy sequences, we study the notion of pointwise ??-statistical convergence of fuzzy mappings of order ?. Also, we establish the concept of strongly ??-summable sequences of fuzzy mappings and investigate some inclusion relations. Further, we get an analogue of Korovkin-type approximation theorem for fuzzy positive linear operators with respect to ??-statistical convergence. Lastly, we apply fuzzy Bernstein operator to construct an example in support of our result.


Sign in / Sign up

Export Citation Format

Share Document