Brain histamine metabolism in transmissible spongiform encephalopathy (Scrapie)

1986 ◽  
Vol 65 (3-4) ◽  
pp. 187-192
Author(s):  
J. Z. Nowak ◽  
A. Bogucki ◽  
P. Liberski
Author(s):  
Jonathan D F Wadsworth ◽  
Susan Joiner ◽  
Jacqueline M Linehan ◽  
Kezia Jack ◽  
Huda Al-Doujaily ◽  
...  

Abstract Chronic wasting disease (CWD) is the transmissible spongiform encephalopathy or prion disease affecting cervids. In 2016, the first cases of CWD were reported in Europe in Norwegian wild reindeer and moose. The origin and zoonotic potential of these new prion isolates remain unknown. In this study to investigate zoonotic potential we inoculated brain tissue from CWD-infected Norwegian reindeer and moose into transgenic mice overexpressing human prion protein. After prolonged postinoculation survival periods no evidence for prion transmission was seen, suggesting that the zoonotic potential of these isolates is low.


2003 ◽  
Vol 15 (3) ◽  
pp. 274-277 ◽  
Author(s):  
Daniel H. Gould ◽  
James L. Voss ◽  
Michael W. Miller ◽  
Annette M. Bachand ◽  
Bruce A. Cummings ◽  
...  

A geographically targeted survey of potentially high-risk, adult cattle in chronic wasting disease (CWD)–endemic areas in Colorado was initiated to assess the possibility of the spread of CWD from deer to cattle under natural conditions. Surveyed cattle were sympatric with free-roaming deer in geographically defined areas where CWD occurs and where CWD prevalence has been estimated. To qualify for inclusion in the survey, cattle had to be at least 4 years old and had to have spent a minimum of 4 years in surveyed areas. Brains from culled cattle were examined microscopically and immunohistochemically for tissue alterations indicative of a transmissible spongiform encephalopathy (TSE). Two hundred sixty-two brains were suitable for evaluation and were found to lack changes indicative of a TSE infection. Prion deposition was not demonstrable using a method involving formic acid and proteinase-K treatment before application of monoclonal antibody to bovine prion protein (F99/97.6.1). Some incidental neuropathologic changes unrelated to those of TSEs were detected. Findings from this study suggest that large-scale spread of CWD from deer to cattle under natural range conditions in CWD-endemic areas of northeast Colorado is unlikely.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Allison Kraus ◽  
Gregory J. Raymond ◽  
Brent Race ◽  
Katrina J. Campbell ◽  
Andrew G. Hughson ◽  
...  

ABSTRACT Accumulation of fibrillar protein aggregates is a hallmark of many diseases. While numerous proteins form fibrils by prion-like seeded polymerization in vitro, only some are transmissible and pathogenic in vivo. To probe the structural features that confer transmissibility to prion protein (PrP) fibrils, we have analyzed synthetic PrP amyloids with or without the human prion disease-associated P102L mutation. The formation of infectious prions from PrP molecules in vitro has required cofactors and/or unphysiological denaturing conditions. Here, we demonstrate that, under physiologically compatible conditions without cofactors, the P102L mutation in recombinant hamster PrP promoted prion formation when seeded by minute amounts of scrapie prions in vitro. Surprisingly, combination of the P102L mutation with charge-neutralizing substitutions of four nearby lysines promoted spontaneous prion formation. When inoculated into hamsters, both of these types of synthetic prions initiated substantial accumulation of prion seeding activity and protease-resistant PrP without transmissible spongiform encephalopathy (TSE) clinical signs or notable glial activation. Our evidence suggests that PrP's centrally located proline and lysine residues act as conformational switches in the in vitro formation of transmissible PrP amyloids. IMPORTANCE Many diseases involve the damaging accumulation of specific misfolded proteins in thread-like aggregates. These threads (fibrils) are capable of growing on the ends by seeding the refolding and incorporation of the normal form of the given protein. In many cases such aggregates can be infectious and propagate like prions when transmitted from one individual host to another. Some transmitted aggregates can cause fatal disease, as with human iatrogenic prion diseases, while other aggregates appear to be relatively innocuous. The factors that distinguish infectious and pathogenic protein aggregates from more innocuous ones are poorly understood. Here we have compared the combined effects of prion seeding and mutations of prion protein (PrP) on the structure and transmission properties of synthetic PrP aggregates. Our results highlight the influence of specific sequence features in the normally unstructured region of PrP that influence the infectious and neuropathogenic properties of PrP-derived aggregates.


1996 ◽  
Vol 17 (8) ◽  
pp. 521-528
Author(s):  
Dominique Dormont

AbstractTransmissible spongiform encephalopathies are rare lethal diseases induced in humans and animals by unconventional agents called transmissible spongiform encephalopathy agents (TSEAs), virions, or prions. Several cases of iatrogenic Creutzfeldt-Jakob disease (CJD) have been reported in the literature after neuro-surgery, treatment with pituitary-derived hormones, corneal grafting, and use of dura mater lyophilisates. In a given infected individual, TSEA-associated infectiousness depends on the nature of the organ: the central nervous system has the highest infectiousness, spleen and lymph nodes a medium infectiousness, and organs such as bone, skin, or skeletal muscles do not harbor any detectable infectiousness in experimental models. Transmissible spongiform encephalopathy/prions have unconventional properties; in particular, they resist almost all the chemical and physical processes that inactivate conventional viruses. Therefore, prevention of CJD agent transmission must be taken into account in daily hospital practice. Efficient sterilization procedures should be determined. In tissue and blood donation, donors with a neurologic history must be excluded, and patients treated with pituitary-derived hormones should be considered potentially infected with TSEA and excluded.


1999 ◽  
Vol 73 (8) ◽  
pp. 6245-6250 ◽  
Author(s):  
Joëlle Chabry ◽  
Suzette A. Priola ◽  
Kathy Wehrly ◽  
Jane Nishio ◽  
James Hope ◽  
...  

ABSTRACT Conversion of the normal protease-sensitive prion protein (PrP) to its abnormal protease-resistant isoform (PrP-res) is a major feature of the pathogenesis associated with transmissible spongiform encephalopathy (TSE) diseases. In previous experiments, PrP conversion was inhibited by a peptide composed of hamster PrP residues 109 to 141, suggesting that this region of the PrP molecule plays a crucial role in the conversion process. In this study, we used PrP-res derived from animals infected with two different mouse scrapie strains and one hamster scrapie strain to investigate the species specificity of these conversion reactions. Conversion of PrP was found to be completely species specific; however, despite having three amino acid differences, peptides corresponding to the hamster and mouse PrP sequences from residues 109 to 141 inhibited both the mouse and hamster PrP conversion systems equally. Furthermore, a peptide corresponding to hamster PrP residues 119 to 136, which was identical in both mouse and hamster PrP, was able to inhibit PrP-res formation in both the mouse and hamster cell-free systems as well as in scrapie-infected mouse neuroblastoma cell cultures. Because the PrP region from 119 to 136 is very conserved in most species, this peptide may have inhibitory effects on PrP conversion in a wide variety of TSE diseases.


Sign in / Sign up

Export Citation Format

Share Document