The role of the heat source of the Tibetan Plateau in the general circulation

1998 ◽  
Vol 67 (1-4) ◽  
pp. 181-198 ◽  
Author(s):  
Du-Zheng Ye ◽  
Guo-Xiong Wu
2021 ◽  
Author(s):  
Qingquan Li ◽  
Mengchu Zhao ◽  
Song Yang ◽  
Xinyong Shen ◽  
Lili Dong ◽  
...  

AbstractThe thermal effect of the Tibetan Plateau (TP) on the northern hemisphere climate has long been a hot topic of scientific research. However, the global effects of the TP heat source are still unclear. We investigate the teleconnection patterns coincident with the TP heat source in boreal summer using both observational data and numerical models including a linearized baroclinic model and an atmospheric general circulation model. The western TP shows the most intense variability in atmospheric heating and the most active connection to atmospheric circulations. The surface sensible heating component of the western TP heat source is associated with a high-latitude wave train propagating from North Japan to central North America through the Bering Sea and Canada. The radiative heating component is accompanied by a wavenumber-4 wave train over Eurasia. We focus on the global zonally-oriented pattern that is connected with the latent heat release from the western TP, referred to here as the TP–circumglobal teleconnection (TP-CGT). The TP-CGT pattern is triggered by the western TP latent heating in two parts starting from the TP: an eastward-propagating wave train trapped in the westerly jet stream and a westward Rossby wave response. The TP-CGT accounts for above 18% of the total variance of the circumglobal teleconnection pattern and modulates mid-latitude precipitation by superimposition. The western TP is the key region in which diabatic heating can initiate the two atmospheric responses concurrently, and the heating over northeastern Asia or the Indian Peninsula is unable to induce the circumglobal pattern directly. The unique geographical location and strong tropospheric heating also make the western TP as a “transit area” of transferring the indirect impact of the Indian summer monsoon (ISM) to the TP-CGT. These results enhance our understanding of the relationship between the circumglobal teleconnection and the ISM and is helpful for improving the prediction of the circumglobal teleconnection variability.


2021 ◽  
pp. 1
Author(s):  
Jing Lei ◽  
Zhengguo Shi ◽  
Xiaoning Xie ◽  
Yingying Sha ◽  
Xinzhou Li ◽  
...  

AbstractThe westerly jet (WJ) is an important component of atmospheric circulation, which is characterized by prominent seasonal variations in intensity and position. However, the response of WJ over Asia during the Last Glacial Maximum (LGM) is still not clear. Using general circulation model experiments, the seasonal behaviors of WJ over Central Asia and Japan are analyzed in this paper. The results show that, compared to present day (PD), the WJ presents a complicated response during the LGM, both in intensity and position. Over Central Asia, it becomes weaker in both summer and winter. But over Japan, it is enhanced in summer but becomes diminished in winter. In terms of position, the WJ over Central Asia shifts southwards in both summer and winter, while the WJ over Japan moves southwards in summer but does not change obviously relative to PD in winter. Such WJ changes are well explained by meridional temperature gradients in high troposphere, which is closely linked to seasonal thermal anomalies over the Tibetan Plateau (TP). Despite of cooler LGM condition, the anomalous warming center over TP becomes stronger in summer. Derived from the heat budget equation, the stronger heating center is mainly caused by the weaker adiabatic cooling generated from ascending motion over south of TP. In winter, the cooling over TP is also strengthened and mostly owes to the subsidence-induced weaker adiabatic heating. Due to the importance of WJ, the potential role of TP thermal effect should be focused when explaining the East Asian climate change during the LGM.


Tellus B ◽  
2019 ◽  
Vol 71 (1) ◽  
pp. 1577070 ◽  
Author(s):  
Qianshan He ◽  
Xiangdong Zheng ◽  
Jian Li ◽  
Wei Gao ◽  
Yanyu Wang ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1631
Author(s):  
Fan ◽  
Pang ◽  
Liao ◽  
Tian ◽  
Hao ◽  
...  

The Ganzi geothermal field, located in the eastern sector of the Himalayan geothermal belt, is full of high-temperature surface manifestations. However, the geothermal potential has not been assessed so far. The hydrochemical and gas isotopic characteristics have been investigated in this study to determine the geochemical processes involved in the formation of the geothermal water. On the basis of δ18O and δD values, the geothermal waters originate from snow and glacier melt water. The water chemistry type is dominated by HCO3-Na, which is mainly derived from water-CO2-silicate interactions, as also indicated by the 87Sr/86Sr ratios (0.714098–0.716888). Based on Cl-enthalpy mixing model, the chloride concentration of the deep geothermal fluid is 37 mg/L, which is lower than that of the existing magmatic heat source area. The estimated reservoir temperature ranges from 180–210 °C. Carbon isotope data demonstrate that the CO2 mainly originates from marine limestone metamorphism, with a fraction of 74–86%. The helium isotope ratio is 0.17–0.39 Ra, indicating that the He mainly comes from atmospheric and crustal sources, and no more than 5% comes from a mantle source. According to this evidence, we propose that there is no magmatic heat source below the Ganzi geothermal field, making it a distinctive type of high-temperature geothermal system on the Tibetan Plateau.


2020 ◽  
Vol 221 (3) ◽  
pp. 1971-1983
Author(s):  
Lin Chen ◽  
Lijun Liu ◽  
Fabio A Capitanio ◽  
Taras V Gerya ◽  
Yang Li

SUMMARY The Tibetan crust is sliced by several east–west trending suture zones. The role of these suture zones in the evolution of the Himalayan range and Tibetan plateau remains unclear. Here we use 3-D thermomechanical simulations to investigate the role of pre-existing weak zones within the Asian Plate in the formation of orogen and plateau growth during continental collision. Our results show that partitioning of deformation along the convergent margin leads to scraping off of crustal material into an orogenic wedge above the margin and crustal thickening in the retro-continent, eventually forming a large orogenic plateau in front of the indenter. Pre-existing weak zone(s) within the retro-continent is reactivated at the early stage of convergence, and facilitates the northward propagation of strain and widening of the orogenic plateau. The northernmost weak zone sets the northern limit of the Tibetan plateau. Our models also show rheological weakening of the congested buoyant crust within the collisional zone drives wedge-type exhumation of deeply buried crust at the southern flank of the plateau, which may explain the formation of the Greater Himalayan Sequence.


2013 ◽  
Vol 26 (19) ◽  
pp. 7747-7766 ◽  
Author(s):  
Anmin Duan ◽  
Jun Hu ◽  
Zhixiang Xiao

Abstract Temporal variability within the Tibetan Plateau summer monsoon (TPSM) is closely linked to both the East and South Asian summer monsoons over several time scales but has received much less attention than these other systems. In this study, extensive integrations under phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical scenarios from 15 coupled general circulation models (CGCMs) and Atmospheric Model Intercomparison Project (AMIP) runs from eight atmospheric general circulation models (AGCMs) are used to evaluate the performance of these GCMs. Results indicate that all GCMs are able to simulate the climate mean TPSM circulation system. However, the large bias associated with precipitation intensity and patterns remains, despite the higher resolution and inclusion of the indirect effects of sulfate aerosol that have helped to improve the skill of the models to simulate the annual cycle of precipitation in both AGCMs and CGCMs. The interannual variability of the surface heat low and the Tibetan high in most of the AGCMs resembles the observation reasonably because of the prescribed forcing fields. However, only a few models were able to reproduce the observed seesaw pattern associated with the interannual variability of the TPSM and the East Asian summer monsoon (EASM). Regarding long-term trends, most models overestimated the amplitude of the tropospheric warming and the declining trend in the surface heat low between 1979 and 2005. In addition, the observed cooling trend in the upper troposphere and the decline of the Tibetan high were not reproduced by most models. Therefore, there is still significant scope for improving GCM simulations of regional climate change, especially in regions near extensive mountain ranges.


Sign in / Sign up

Export Citation Format

Share Document