The stress-strain state at the junction of a jacket shell to the body of a vessel

1971 ◽  
Vol 7 (3) ◽  
pp. 205-207
Author(s):  
V. D. Babanskii ◽  
V. F. Kurylev ◽  
S. M. Kutepov
Author(s):  
A.Yu. Burtsev ◽  
◽  
V.V. Glagolev ◽  
A.A. Markin ◽  
◽  
...  

The subcritical elastoplastic deformation and the fracturing of an element of a finite element continuum in the Ansys Workbench complex are considered. When solving the elastoplastic problem of the subcritical deformation, a finite element with the failure criterion reached is selected. In a pre-fracture state of the element, the nodal forces provided by the interaction with an adjacent element are determined using the Ansys Workbench internal procedure. The following step is the consideration of the varying stress-strain state of the body during the element destruction. The elastoplastic problem is solved in the conditions of simple unloading of the body surface adjacent to the destructible element while maintaining the external load corresponding to the destruction initiation. When implementing the local unloading, a possibility of the new plastic region formation and the partial unloading are studied. As a result, the stress-strain state of the body at the beginning of local unloading is not the same as that at the end of the process. The proposed approach differs from the “element killing” procedure when the element stiffness after the failure criterion reached is assumed to be close to zero. The paper provides solutions to the problems of deformation of elastic and elastoplastic plates with a side cut taking into account their element destruction.


Author(s):  
Andrey Grabovskiy ◽  
Mykola А. Tkachuk ◽  
Natalia Domina ◽  
Ganna Tkachuk ◽  
Olha Ishchenko ◽  
...  

  In many constructions, their elements are in contact with nominally matching (congruent) surfaces. In reality, this contact is disturbed due to deviations in the shape of these surfaces from the nominal. To study the effect of this perturbation on the distribution of contact pressure, the analysis of the stress-strain state of the body system of punched sheet-die is carried out. The middle element of this system deviates from the nominally flat shape. This causes a change in the contact pressure distribution. The proportionality between the clamping force and the level of contact pressure is also lost. The reliability and accuracy of the results obtained by numerical calculation have been experimentally confirmed. Keywords: stress-strain state; contact pressure; contact interaction; method of variational inequalities; Kalker variational principle; finite element method


2021 ◽  
Vol 21 (2) ◽  
pp. 123-132
Author(s):  
S. I. Lazarev ◽  
О. V. Lomakina ◽  
V. Е. Bulanov ◽  
I. V. Khorokhorina

Introduction. Currently, the purification of wastewater and technological solutions by membrane methods is considered a promising way to neutralize liquid waste. Therefore, the task of developing an engineering method for calculating baromembrane devices is a challenge. Studies on methods involving calculation of design and process variables, membrane equipment design, research of technological features of membrane devices, selection of design schemes, as well as methods of strength and rigidity analysis, are investigated.Materials and Methods. Basic elements of the body of the combined membrane apparatus are considered, a design scheme is proposed, and a method for calculating the strength and rigidity of the main load-bearing element, the cover, is described.  Results. The methods determine the required dimensions of shells and plates for the development of a combined membrane apparatus, and evaluate the strength properties of the devices of this class. The construction elements of the apparatus (primarily, the load-bearing covers) must meet not only the requirements of efficiency and quality of separation and cleaning of solutions, but also the conditions for safe operation. Therefore, the design of the device covers should be based on the optimal design dimensions (thicknesses of round plates, toroidal shells, and support rings). To test the method, the stress-strain state of the membrane apparatus structure was calculated for strength and rigidity. As an example, we consider one cover presented in the form of an open toroidal shell. The evaluation of the application of this technique, taking into account the fact that the shell is mated with a round plate in the inner diameter, and with a ring in the outer diameter, has provided the determination of the required parameters.Discussion and Conclusions. The obtained method of analytical description of the mechanical impact on the elements of the combined apparatus and the example of calculating the toroidal shell and plate, enables to evaluate the stressstrain state of the structure for strength and rigidity. The results of the calculation of covers made of various materials at different pressures are presented. Loading the combined apparatus with transmembrane pressure made it possible to determine the required dimensions of the shells and plates for its design and development. 


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Mikhail Krasnov ◽  
Nikolay Gorshkov ◽  
Yuan Jingwen ◽  
Svetlana Jdanova

Excavations and embankments are the most common ground transport structures, operational reliability and durability of which is determined by the stability of their sides and slopes. The first article deals with the features of stress-strain state and changes in stability of ground transport structures (excavations) based on modeling according to the certified program of finite element method GenIDE32. At modeling the layer-by-layer excavation of homogeneous soil from excavations with finite geometrical sizes was carried out. In the excavation edge array, in the field of displacement vector ui, appeared are poorly studied phenomena in the form of «rotation circles» or short vortices. These phenomena, discovered in model experiments (Yu.I. Soloviev, 1956), require detailed research in the future. Graphic results of the calculations performed allow one to see the appearance and development of zones of «plasticity» or limit state in the form of zones of «shift-compression», «compression-shift» and «stretching». Shift-compression zones and vice versa are shown as shaded finite elements at an angle crosswise, while stretch zones are shown as shaded vertically, horizontally and vertically, and horizontally finite elements. These zones, in the process of modeling, are drawn in the edges of the projections of a slide with vertical and horizontal cracks. The contours of the landslide prisms show themselves well when the average relative volume deformation values of ε are displayed on the screen. The display of this value in two colors defines the landslide contours in this figure. Sliding lines with the minimum value of the stability coefficient kst min pass near the borders, where values of this parameter are equal to zero. In this figure, in the upper part of the array, you can see the places where vertical cracks are formed. The analysis also uses graphs of stress-strain state trajectories in the space of stress tensor invariants σij and relative deformations εij in significant nodes and finite elements, located, including, in places of sliding lines with kst min. They make it possible to see from the volume and shape deformation graphs where the system with the calculated condition is located, for example, from the condition at which the body of the landslide was formed.


Vestnik MGSU ◽  
2015 ◽  
pp. 157-166
Author(s):  
Vyacheslav Valentinovich Orekhov

One of the main factors determining the safety of earth sea and river hydraulic structures erected on water-saturated grounds is the process of consolidation, manifested under the action of static and seismic loads. A feature of cohesionless soils located in the structure itself or in its base, is their potential ability to liquefaction under seismic impacts. This paper describes the method of calculating the saturated soil’s environments under seismic actions based on the numerical solution of differential equations of the theory of consolidation by finite element method. The results of the static problem solving for the phased construction of the installation are used as the initial conditions. In order to describe the deformability of soil materials mathematical model formed by the theory of plastic flow with hardening is used. The parameters of this model are determined by the results of triaxial testing of soils. As an example, we study the interaction of a sea rockfill dam with a sandy base under seismic impacts, determined by the synthetic accelerograms. The results of calculations of the stress-strain state of the two sections of the dam (shallow and deep) are presented, and assessment is made of the possibility of liquefaction of sandy soil base. It is shown that the pore pressure that occurs in water-saturated cohesionless soil base and the body of the dam under seismic impacts, unloads the soil skeleton, which leads to a decrease in local shear safety factors. And, in the less dense soil base of the shallow section of the dam, the soil skeleton is unloaded to a greater extent, which negatively affects its overall safety factor.


2020 ◽  
Vol 2 ◽  
pp. 201-209
Author(s):  
Anvar I. Chanyshev ◽  
Ilgizar M. Abdulin ◽  
Olga A. Lukyashko

Ideally plastic state of material under conditions of Mises plasticity, proportionality of stress and strain deviators (deformation theory of plasticity) and elastic volume change is considered. Given the Cauchy stress and displacement vectors specified on the body surface (with indicated state) or its area, all six components of the stress tensor, all six components of the strain tensor, and also three components of the rotation vector are restored on this surface. This method for determining the stress-strain state can be related to the methods of rapid assessment of the structure state (body surface), since differential equations inside the body are not involved.


Author(s):  
Anton Vasiliev ◽  
Serhii Kutsenko ◽  
Mykola А. Tkachuk ◽  
Andrey Grabovskiy ◽  
Oleg Shatalov ◽  
...  

To study the effect of shock wave load on the body elements of vehicles, a setting has been developed that takes into account the mobile nature of this load. A specialized parametric finite-element model of the body layout has been created armored-carrier, taking into account the peculiarities of the studied process. The problem of determining the stress-strain state armored-hulls solved in static and dynamic formulation. The space-time distributions of components and characteristics of the stress-strain state of the investigated model armored-carrier of armored hulls are given. The results of research in the used formulations indicate the need to solve the problem in a complete dynamic formulation with account for plastic deformations. This  establishes a new methodology for the rational choice of engineering solutions. Keywords: stress-strain state; armored carrier; armored hulls; shock wave; moving load; sample; rational constructive decision


2020 ◽  
pp. 97-106
Author(s):  
Y. O Izmaylova ◽  
A. B Freidin

Various processes are associated with the surface growth of solids, such as biological growth, formation of surfaces, processes accompanying additive technologies. Experiments show that the growth process of living and non-living matter can be controlled by external influences, including mechanical ones. This paper presents a surface growth model based on the expression for the configurational force obtained from the fundamental balances of mass, momentum and energy, and the second law of thermodynamics in the form of the Clausius-Duhem inequality. It is shown that the configurational force is the normal component of the tensor, called the surface growth tensor, which controls the processes of growth and adaptation to external mechanical loads. A kinetic equation in the form of the dependence of the growth rate on the growth tensor is formulated. A solid body is considered, in which a volumetric supply and subsequent diffusion of matter to the growth boundary occur. On the surface of the body, the transformation of one substance into another occurs, resulting in surface growth or resorption of the body. The surface growth process depends on the stress-strain state of the body and the concentration of the diffusing matter. In the process of growth, stresses and deformations change, affecting the configurational force and the rate of the matter supply, which also affects the configurational force. In addition, the model takes into account the growth strains that can occur in new layers of the material and affect the growth velocity. Thus, there is a coupled problem including the description of the supply, diffusion and growth processes and determination of the stress-strain state. The model was used for the problems of surface growth of various bodies under various loading conditions.


Author(s):  
D.A. Ivanychev ◽  

The paper presents a methodology for determining a stress-strain state of transversely isotropic bodies of revolution under conditions of a mixed problem of the elasticity theory, i.e. displacements of the boundary points are specified on the one part of the surface, and forces are assigned on the other part. At the same time, the body is exposed to mass forces. The problem solving involves the development of the boundary state method. A theory is created to construct the bases of spaces for internal and boundary states. The basis of the internal states includes displacements, strains, and stresses. The basis of the boundary states includes forces at the boundary, displacements of the boundary points, and mass forces. Spaces are conjugated by an isomorphism. It allows one to reduce the determination of the internal state to a study of the boundary state. Characteristics of the stress-strain state are presented in terms of the Fourier series. Finally, the determination of the elastic state is reduced to the solving of an infinite system of algebraic equations. A result of the study is presented as a solution to the main mixed problem for a hemisphere clamped on a plane surface and exposed to a concentrated compressive force and mass forces.


2019 ◽  
Vol 294 ◽  
pp. 06003 ◽  
Author(s):  
Stepan Dovhaniuk ◽  
Volodymyr Kalashnyk ◽  
Alexei Reidemeister ◽  
Oleksandr Shykunov

It was developed a computational model to evaluate the body strength of short base hopper models 19-758-01, 20-471, and 20-4015 when unloading them on the car dumper VRS–134M. Modeling of the stress-strain state of the car design was made using the finite element method. It was established that in terms of strength, bodies of the hopper models 19-758-01, 20-471, and 20-4015 are suitable for unloading on car dumper. The results of experimental studies showed sufficiently high accuracy of the chosen computational model for estimating the stress-strain state of design and confirmed the possibility of hopper car unloading on the car dumper VRS–134M.


Sign in / Sign up

Export Citation Format

Share Document