scholarly journals MODELING THE ACTION OF THE SHOCK-WAVE LOAD ON THE HULLS ELEMENTS OF VEHICLES

Author(s):  
Anton Vasiliev ◽  
Serhii Kutsenko ◽  
Mykola А. Tkachuk ◽  
Andrey Grabovskiy ◽  
Oleg Shatalov ◽  
...  

To study the effect of shock wave load on the body elements of vehicles, a setting has been developed that takes into account the mobile nature of this load. A specialized parametric finite-element model of the body layout has been created armored-carrier, taking into account the peculiarities of the studied process. The problem of determining the stress-strain state armored-hulls solved in static and dynamic formulation. The space-time distributions of components and characteristics of the stress-strain state of the investigated model armored-carrier of armored hulls are given. The results of research in the used formulations indicate the need to solve the problem in a complete dynamic formulation with account for plastic deformations. This  establishes a new methodology for the rational choice of engineering solutions. Keywords: stress-strain state; armored carrier; armored hulls; shock wave; moving load; sample; rational constructive decision

2020 ◽  
Vol 3 (8) ◽  
pp. 28-34
Author(s):  
N. V. IVANITSKAYA ◽  
◽  
A. K. BAYBULOV ◽  
M. V. SAFRONCHUK ◽  
◽  
...  

In many countries economic policy has been paying increasing attention to the modernization and development of transport infrastructure as a measure of macroeconomic stimulation. Tunnels as an important component of transport infrastructure save a lot of logistical costs. It stimulates increasing freight and passenger traffic as well as the risks of the consequences of unforeseen overloads. The objective of the paper is to suggest the way to reduce operational risks of unforeseen moving load by modeling of the stress-strain state of a transport tunnel under growing load for different conditions and geophysical parameters. The article presents the results of a study of the stress-strain state (SSS) of a transport tunnel exposed to a mobile surface load. Numerical experiments carried out in the ANSYS software package made it possible to obtain diagrams showing the distribution of equivalent stresses (von Mises – stresses) according to the finite element model of the tunnel. The research results give grounds to assert that from external factors the stress state of the tunnel is mainly influenced by the distance to the moving load. The results obtained make it possible to predict in advance the parameters of the stress-strain state in the near-contour area of the tunnel and use the results in the subsequent design of underground facilities, as well as to increase their reliability and operational safety. This investigation gives an opportunity not only to reduce operational risks at the design stage, but to choose an optimal balance between investigation costs and benefits of safety usage period prolongation.


Author(s):  
Andrey Grabovskiy ◽  
Mykola А. Tkachuk ◽  
Natalia Domina ◽  
Ganna Tkachuk ◽  
Olha Ishchenko ◽  
...  

  In many constructions, their elements are in contact with nominally matching (congruent) surfaces. In reality, this contact is disturbed due to deviations in the shape of these surfaces from the nominal. To study the effect of this perturbation on the distribution of contact pressure, the analysis of the stress-strain state of the body system of punched sheet-die is carried out. The middle element of this system deviates from the nominally flat shape. This causes a change in the contact pressure distribution. The proportionality between the clamping force and the level of contact pressure is also lost. The reliability and accuracy of the results obtained by numerical calculation have been experimentally confirmed. Keywords: stress-strain state; contact pressure; contact interaction; method of variational inequalities; Kalker variational principle; finite element method


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Author(s):  
V. I. Tarichko ◽  
P. I. Shalupina

The paper focuses on a method for assessing the dynamic loading of the frame of a special wheeled chassis when it moves on roads of various categories. Based on the developed finite element model of the frame, we obtained and analyzed full-size patterns of the stress-strain state of the frame and oscillograms of equivalent stresses in the most loaded zones of the frame.


2019 ◽  
Vol 221 ◽  
pp. 01018 ◽  
Author(s):  
Vladimir Zimin ◽  
Alexey Krylov ◽  
Sergey Churilin ◽  
Zikun Zhang

Today large space structures are in focus of attention of engineers and designers of rocket and space equipment. In ground-based experiments, it is not always possible to carry out complex tests of large space structure functionality. Therefore, the development of mathematical models describing properly the transformable structure dynamics when they opened from the densely packed transport state to the operating position in the orbit becomes very important. To determine the stress-strain state of the frame elements when it is unfolding the shape of the framework is taken at the moments when relative velocities of the adjacent sections are maximal. Supposed, that at these moments the frame elements are getting on the stops limiting their relative angular displacements, and the structure behaves as an elastic rod with specified characteristics. Numerical analysis of the stress-strain state in the framework is carried out by means of a finite element model. Therefore, the represented mathematical model can be effectively used to predict the functional suitability of such transformable space structures already on the early stages of their development.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292
Author(s):  
Sergei V. Smirnov ◽  
Vladimir V. Kopylov ◽  
Alexander R. Makarov ◽  
Alexander A. Vorobyev ◽  
Kirill V. Shkarin

The article describes the features developed by the authors of the profiling method of the piston skirt, provides the main parameters that affect the lubrication conditions of the piston skirt and the magnitude of mechanical losses. In computational studies, the basic formulas are given for determining the thickness of the oil layer in a piston skirt - cylinder sleeve conjunction to assess the nature of friction. To determine the deformations, the finite element method is used on the spatial model of the piston. To verify the finite element model, a stand for experimental studies was developed. The article describes the developed stand, the methodology and results of experimental studies of the stress-strain state of the two-piece piston skirt obtained at this stand and a comparative analysis of the results of the calculated and experimental studies of the stress-strain state of the two-piece piston skirt of a diesel engine. The research results showed that the developed stand can be used to verify mathematical models for calculating the stress-strain state of the piston skirt in the pilot production of internal combustion engine pistons to accelerate and reduce the cost of the piston design development process, as well as the results of experimental studies obtained at the stand, can be used as initial data for the developed mathematical model of the dynamics of the movement of the piston and the profiling of the piston skirt.


Author(s):  
A.Yu. Burtsev ◽  
◽  
V.V. Glagolev ◽  
A.A. Markin ◽  
◽  
...  

The subcritical elastoplastic deformation and the fracturing of an element of a finite element continuum in the Ansys Workbench complex are considered. When solving the elastoplastic problem of the subcritical deformation, a finite element with the failure criterion reached is selected. In a pre-fracture state of the element, the nodal forces provided by the interaction with an adjacent element are determined using the Ansys Workbench internal procedure. The following step is the consideration of the varying stress-strain state of the body during the element destruction. The elastoplastic problem is solved in the conditions of simple unloading of the body surface adjacent to the destructible element while maintaining the external load corresponding to the destruction initiation. When implementing the local unloading, a possibility of the new plastic region formation and the partial unloading are studied. As a result, the stress-strain state of the body at the beginning of local unloading is not the same as that at the end of the process. The proposed approach differs from the “element killing” procedure when the element stiffness after the failure criterion reached is assumed to be close to zero. The paper provides solutions to the problems of deformation of elastic and elastoplastic plates with a side cut taking into account their element destruction.


2019 ◽  
Vol 7 (2) ◽  
pp. 5-9
Author(s):  
Галина Кравченко ◽  
Galina Kravchenko ◽  
Елена Труфанова ◽  
Elena Trufanova ◽  
Денис Суслопаров ◽  
...  

The multi-variant loading of the large-span unique steel covering of the stadium under snow load is considered. The spatial finite element model is developed using LIRA software. The analysis of the existing schemes application of snow loading is carried out according to the codes. Four snow load cases on the stadium's covering are assumed for analysis. The analysis of the stress-strain state of the stadium structures, the selection and verification of sections of the steel covering are performed. The results show that it is necessary to simulate behaviour of a structure under all possible load cases.


2021 ◽  
Vol 21 (2) ◽  
pp. 123-132
Author(s):  
S. I. Lazarev ◽  
О. V. Lomakina ◽  
V. Е. Bulanov ◽  
I. V. Khorokhorina

Introduction. Currently, the purification of wastewater and technological solutions by membrane methods is considered a promising way to neutralize liquid waste. Therefore, the task of developing an engineering method for calculating baromembrane devices is a challenge. Studies on methods involving calculation of design and process variables, membrane equipment design, research of technological features of membrane devices, selection of design schemes, as well as methods of strength and rigidity analysis, are investigated.Materials and Methods. Basic elements of the body of the combined membrane apparatus are considered, a design scheme is proposed, and a method for calculating the strength and rigidity of the main load-bearing element, the cover, is described.  Results. The methods determine the required dimensions of shells and plates for the development of a combined membrane apparatus, and evaluate the strength properties of the devices of this class. The construction elements of the apparatus (primarily, the load-bearing covers) must meet not only the requirements of efficiency and quality of separation and cleaning of solutions, but also the conditions for safe operation. Therefore, the design of the device covers should be based on the optimal design dimensions (thicknesses of round plates, toroidal shells, and support rings). To test the method, the stress-strain state of the membrane apparatus structure was calculated for strength and rigidity. As an example, we consider one cover presented in the form of an open toroidal shell. The evaluation of the application of this technique, taking into account the fact that the shell is mated with a round plate in the inner diameter, and with a ring in the outer diameter, has provided the determination of the required parameters.Discussion and Conclusions. The obtained method of analytical description of the mechanical impact on the elements of the combined apparatus and the example of calculating the toroidal shell and plate, enables to evaluate the stressstrain state of the structure for strength and rigidity. The results of the calculation of covers made of various materials at different pressures are presented. Loading the combined apparatus with transmembrane pressure made it possible to determine the required dimensions of the shells and plates for its design and development. 


Sign in / Sign up

Export Citation Format

Share Document