Distribution of plasma membrane rosettes and kinetics of cellulose formation in xylem development of higher plants

PROTOPLASMA ◽  
1986 ◽  
Vol 131 (2) ◽  
pp. 142-152 ◽  
Author(s):  
B. Schneider ◽  
W. Herth
Author(s):  
James Cronshaw ◽  
Jamison E. Gilder

Adenosine triphosphatase (ATPase) activity has been shown to be associated with numerous physiological processes in both plants and animal cells. Biochemical studies have shown that in higher plants ATPase activity is high in cell wall preparations and is associated with the plasma membrane, nuclei, mitochondria, chloroplasts and lysosomes. However, there have been only a few ATPase localization studies of higher plants at the electron microscope level. Poux (1967) demonstrated ATPase activity associated with most cellular organelles in the protoderm cells of Cucumis roots. Hall (1971) has demonstrated ATPase activity in root tip cells of Zea mays. There was high surface activity largely associated with the plasma membrane and plasmodesmata. ATPase activity was also demonstrated in mitochondria, dictyosomes, endoplasmic reticulum and plastids.


Metabolites ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 73 ◽  
Author(s):  
Lyudmila Ignatova ◽  
Natalia Rudenko ◽  
Elena Zhurikova ◽  
Maria Borisova-Mubarakshina ◽  
Boris Ivanov

The review presents data on the location, nature, properties, number, and expression of carbonic anhydrase genes in the photosynthesizing cells of C3 plants. The available data about the presence of carbonic anhydrases in plasma membrane, cytoplasm, mitochondria, chloroplast stroma and thylakoids are scrutinized. Special attention was paid to the presence of carbonic anhydrase activities in the different parts of thylakoids, and on collation of sources of these activities with enzymes encoded by the established genes of carbonic anhydrases. The data are presented to show that the consistent incorporation of carbonic anhydrases belonging to different families of these enzymes forms a coherent system of CO2 molecules transport from air to chloroplasts in photosynthesizing cells, where they are included in organic molecules in the carboxylation reaction. It is discussed that the manifestation of the activity of a certain carbonic anhydrase depends on environmental conditions and the stage of ontogenesis.


2007 ◽  
Vol 27 (9) ◽  
pp. 3456-3469 ◽  
Author(s):  
Shaohui Huang ◽  
Larry M. Lifshitz ◽  
Christine Jones ◽  
Karl D. Bellve ◽  
Clive Standley ◽  
...  

ABSTRACT Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by ∼4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane.


1978 ◽  
Vol 56 (6) ◽  
pp. 921-925
Author(s):  
L. Spero

A technique is described which has enabled us to measure changes in 22Na+ efflux from smooth muscle plasma membrane vesicles. The resting 22Na+ efflux from these sealed vesicles showed a concentration-dependent increase in response to acetylcholine and other muscarinic agonists, in similar concentrations to those which increased 42K+ efflux in whole muscle. The kinetics of this efflux were complex and could not be described by less than three exponential processes. The response to agonists has, therefore, been characterized by measurement of the half-life of 22Na+ efflux (t1/2). The acetylcholine effect was inhibited by atropine, but unlike the situation in the whole muscle, this inhibition was noncompetitive. Tubocuraine (a nicotinic antagonist) had no effect on this acetylcholine response. Atropine has no effect by itself on the resting 22Na+ efflux, neither did tetrodotoxin or ouabain. 22Na+ efflux from erythrocyte ghosts and liposomes, prepared from lipid extracts of the smooth muscle plasma membrane, was not modified by acetylcholine or atropine.


2018 ◽  
Vol 19 (11) ◽  
pp. 3591 ◽  
Author(s):  
Aki Nishiyama ◽  
Sakura Matsuta ◽  
Genki Chaya ◽  
Takafumi Itoh ◽  
Kotaro Miura ◽  
...  

Heterotrimeric G proteins are important molecules for regulating plant architecture and transmitting external signals to intracellular target proteins in higher plants and mammals. The rice genome contains one canonical α subunit gene (RGA1), four extra-large GTP-binding protein genes (XLGs), one canonical β subunit gene (RGB1), and five γ subunit genes (tentatively named RGG1, RGG2, RGG3/GS3/Mi/OsGGC1, RGG4/DEP1/DN1/OsGGC3, and RGG5/OsGGC2). RGG1 encodes the canonical γ subunit; RGG2 encodes the plant-specific type of γ subunit with additional amino acid residues at the N-terminus; and the remaining three γ subunit genes encode the atypical γ subunits with cysteine abundance at the C-terminus. We aimed to identify the RGG3/GS3/Mi/OsGGC1 gene product, Gγ3, in rice tissues using the anti-Gγ3 domain antibody. We also analyzed the truncated protein, Gγ3∆Cys, in the RGG3/GS3/Mi/OsGGC1 mutant, Mi, using the anti-Gγ3 domain antibody. Based on nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, the immunoprecipitated Gγ3 candidates were confirmed to be Gγ3. Similar to α (Gα) and β subunits (Gβ), Gγ3 was enriched in the plasma membrane fraction, and accumulated in the flower tissues. As RGG3/GS3/Mi/OsGGC1 mutants show the characteristic phenotype in flowers and consequently in seeds, the tissues that accumulated Gγ3 corresponded to the abnormal tissues observed in RGG3/GS3/Mi/OsGGC1 mutants.


1988 ◽  
Vol 27 (6) ◽  
pp. 1631-1638 ◽  
Author(s):  
Patrick Moreau ◽  
Hélène Juguelin ◽  
René Lessire ◽  
Claude Cassagne

Sign in / Sign up

Export Citation Format

Share Document