Efficacy of high dose amino acid solution on spinal cord injury induced by focal Nd : YAG laser irradiation

1995 ◽  
Vol 133 (1-2) ◽  
pp. 73-79 ◽  
Author(s):  
A. �olak ◽  
G. Nurlu ◽  
B. A�ikg�z ◽  
O. E. �zcan
2019 ◽  
Vol 41 (1) ◽  
pp. 150-162 ◽  
Author(s):  
Hadi Askarifirouzjaei ◽  
Leila Khajoueinejad ◽  
Amir Salek Farrokhi ◽  
Mohammad-Taher Tahoori ◽  
Mehdi Fazeli ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Guodong Sun ◽  
Shenghui Zeng ◽  
Xu Liu ◽  
Haishan Shi ◽  
Renwen Zhang ◽  
...  

Abstract Acute inflammation is a central component in the progression of spinal cord injury (SCI). Anti-inflammatory drugs used in the clinic are often administered systemically at high doses, which can paradoxically increase inflammation and result in drug toxicity. A cluster-like mesoporous silica/arctigenin/CAQK composite (MSN-FC@ARC-G) drug delivery system was designed to avoid systemic side effects of high-dose therapy by enabling site-specific drug delivery to the spinal cord. In this nanosystem, mesoporous silica was modified with the FITC fluorescent molecule and CAQK peptides that target brain injury and SCI sites. The size of the nanocarrier was kept at approximately 100 nm to enable penetration of the blood–brain barrier. Arctigenin, a Chinese herbal medicine, was loaded into the nanosystem to reduce inflammation. The in vivo results showed that MSN-FC@ARC-G could attenuate inflammation at the injury site. Behavior and morphology experiments suggested that MSN-FC@ARC-G could diminish local microenvironment damage, especially reducing the expression of interleukin-17 (IL-17) and IL-17-related inflammatory factors, inhibiting the activation of astrocytes, thus protecting neurons and accelerating the recovery of SCI. Our study demonstrated that this novel, silica-based drug delivery system has promising potential for clinical application in SCI therapy.


2011 ◽  
Vol 23 (9) ◽  
pp. 2335-2346 ◽  
Author(s):  
S. Dudley-Javoroski ◽  
P. K. Saha ◽  
G. Liang ◽  
C. Li ◽  
Z. Gao ◽  
...  

2018 ◽  
Vol 119 (02) ◽  
pp. 86-91
Author(s):  
T. Yildirim ◽  
O. Okutan ◽  
E. Akpinar ◽  
A. Yilmaz ◽  
H. S. Isik

2009 ◽  
Vol 11 (6) ◽  
pp. 696-704 ◽  
Author(s):  
Sarah J. Hemley ◽  
B. Biotech ◽  
Jian Tu ◽  
Marcus A. Stoodley

Object Posttraumatic syringomyelia produces a significant burden of pain and neurological deficits in patients with spinal cord injury. The mechanism of syrinx formation is unknown and treatment is often ineffective. A possible explanation for syrinx formation is fluid leakage from the microcirculation in the presence of a compromised blood-spinal cord barrier (BSCB). The aim of this study was to investigate the structural and functional integrity of the BSCB in a model of posttraumatic syringomyelia. Methods The excitotoxic amino acid and arachnoiditis model of syringomyelia was used in 27 Sprague-Dawley rats. Structural integrity of the BSCB was assessed using immunoreactivity to endothelial barrier antigen (EBA), and loss of functional integrity was assessed by extravasation of intravascular horseradish peroxidase. Animals were studied after 3 days, or at 1, 3, 6, or 12 weeks after surgery. There were laminectomy-only and saline injection control animals for comparison at each time point. Results Syrinxes formed in 16 of the 17 animals injected with excitotoxic amino acid. Loss of structural and functional integrity of the BSCB in syrinx animals was noted at all time points. Disruption of the BSCB was most dramatic in tissue adjacent to the syrinx, and in the central and dorsal gray matter. Changes in EBA expression generally corresponded with altered vascular permeability, although in the acute stages, widespread vascular permeability occurred without a corresponding decrease in EBA expression. At the later time points (3–12 weeks) EBA expression was often absent, although no vascular leakage was observed. Conclusions This study demonstrated a prolonged structural and functional disruption of the BSCB in this model of posttraumatic syringomyelia. Loss of functional integrity of the BSCB, with fluid entering the interstitial space of the spinal cord, may contribute to initial cyst formation after spinal cord injury and subsequent enlargement of the cyst, to produce posttraumatic syringomyelia.


2012 ◽  
Vol 23 (1) ◽  
pp. 20-24
Author(s):  
Tapan N Joshi

Abstract Botulinum neurotoxin A (BoNTA) is rapidly gaining acceptance for management of spasticity secondary to spinal cord injury (SCI). Due to its increased usage, more undesirable effects and complications have come in light. Unwanted distant and/or generalised muscle weakness is possible following BoNTA administration in SCI population causing temporary neurological and functional decline. Physicians should carefuly perform a clinical assessment of every patient individually for risks stratification. Additional studies for adult population evaluating adverse-effects of high dose of BoNTA treatment for spasticity management are indicated.


Sign in / Sign up

Export Citation Format

Share Document