Peak power output predicts maximal oxygen uptake and performance time in trained cyclists

Author(s):  
John A. Hawley ◽  
Timothy D. Noakes
2019 ◽  
Vol 14 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Alejandro Javaloyes ◽  
Jose Manuel Sarabia ◽  
Robert Patrick Lamberts ◽  
Manuel Moya-Ramon

Purpose: Road cycling is a sport with extreme physiological demands. Therefore, there is a need to find new strategies to improve performance. Heart-rate variability (HRV) has been suggested as an effective alternative for prescribing training load against predefined training programs. The purpose of this study was to examine the effect of training prescription based on HRV in road cycling performance. Methods: Seventeen well-trained cyclists participated in this study. After an initial evaluation week, cyclists performed 4 baseline weeks of standardized training to establish their resting HRV. Then, cyclists were divided into 2 groups, an HRV-guided group and a traditional periodization group, and they carried out 8 training weeks. Cyclists performed 2 evaluation weeks, after and before a training week. During the evaluation weeks, cyclists performed a graded exercise test to assess maximal oxygen uptake, peak power output, and ventilatory thresholds with their corresponding power output (VT1, VT2, WVT1, and WVT2, respectively) and a 40-min simulated time trial. Results: The HRV-guided group improved peak power output (5.1% [4.5%]; P = .024), WVT2 (13.9% [8.8%]; P = .004), and 40-min all-out time trial (7.3% [4.5%]; P = .005). Maximal oxygen uptake and WVT1 remained similar. The traditional periodization group did not improve significantly after the training week. There were no differences between groups. However, magnitude-based inference analysis showed likely beneficial and possibly beneficial effects for the HRV-guided group instead of the traditional periodization group in 40-min all-out time trial and peak power output, respectively. Conclusion: Daily training prescription based on HRV could result in a better performance enhancement than a traditional periodization in well-trained cyclists.


2020 ◽  
Vol 45 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Leonardo Trevisol Possamai ◽  
Fernando de Souza Campos ◽  
Paulo Cesar do Nascimento Salvador ◽  
Rafael Alves de Aguiar ◽  
Luiz Guilherme Antonacci Guglielmo ◽  
...  

The present study aimed to compare maximal oxygen uptake of a step incremental test with time to exhaustion verification tests (TLIM) performed on the same or different day. Nineteen recreationally trained cyclists (age: 23 ± 2.7 years; maximal oxygen uptake: 48.0 ± 5.8 mL·kg−1·min−1) performed 3 maximal tests as follows: (i) same day: an incremental test with 3-min stages followed by a TLIM at 100% of peak power output of the incremental test (TLIM-SAME) interspaced by 15 min; and (ii) different day: a TLIM at 100% of peak power output of the incremental test (TLIM-DIFF). The maximal oxygen uptake was determined for the 3 tests. The maximal oxygen uptake was not different among the tests (incremental: 3.83 ± 0.41; TLIM-SAME: 3.72 ± 0.42; TLIM-DIFF: 3.75 ± 0.41 L·min−1; P = 0.951). Seven subjects presented a variability greater than ±3% in both verification tests compared with the incremental test. The same-day verification test decreased the exercise tolerance (240 ± 38 vs. 310 ± 36 s) compared with TLIM-DIFF (P < 0.05). In conclusion, the incremental protocol is capable of measuring maximal oxygen uptake because similar values were observed in comparison with verification tests. Although the need for the verification phase is questionable, the additional tests are useful to evaluate individual variability. Novelty Step incremental test is capable of measuring maximal oxygen uptake with similar values during TLIM on the same or different day. Although the necessity of the verification phase is questionable, it can allow the determination of variability in maximal oxygen uptake.


2020 ◽  
Vol 15 (8) ◽  
pp. 1109-1116
Author(s):  
Mathias T. Vangsoe ◽  
Jonas K. Nielsen ◽  
Carl D. Paton

Purpose: Ischemic preconditioning (IPC) and postactivation potentiation (PAP) are warm-up strategies proposed to improve high-intensity sporting performance. However, only few studies have investigated the benefits of these strategies compared with an appropriate control (CON) or an athlete-selected (SELF) warm-up protocol. Therefore, this study examined the effects of 4 different warm-up routines on 1-km time-trial (TT) performance with competitive cyclists. Methods: In a randomized crossover study, 12 well-trained cyclists (age 32 [10] y, mass 77.7 [4.6] kg, peak power output 1141 [61] W) performed 4 different warm-up strategies—(CON) 17 minutes CON only, (SELF) a self-determined warm-up, (IPC) IPC + CON, or (PAP) CON + PAP—prior to completing a maximal-effort 1-km TT. Performance time and power, quadriceps electromyograms, muscle oxygen saturation (SmO2), and blood lactate were measured to determine differences between trials. Results: There were no significant differences (P > .05) in 1-km performance time between CON (76.9 [5.2] s), SELF (77.3 [6.0] s), IPC (77.0 [5.5] s), or PAP (77.3 [5.9] s) protocols. Furthermore, there were no significant differences in mean or peak power output between trials. Finally, electromyogram activity, SmO2, and recovery blood lactate concentration were not different between conditions. Conclusions: Adding IPC or PAP protocols to a short CON warm-up appears to provide no additional benefit to 1-km TT performance with well-trained cyclists and is therefore not recommended. Furthermore, additional IPC and PAP protocols had no effect on electromyograms and SmO2 values during the TT or peak lactate concentration during recovery.


2009 ◽  
Vol 4 (4) ◽  
pp. 517-523 ◽  
Author(s):  
Carl D. Paton

Purpose:Aerobic economy is an important factor that affects the performance of competitive cyclists. It has been suggested that placing the foot more anteriorly on the bicycle pedals may improve economy over the traditional foot position by improving pedaling efficiency. The current study examines the effects of changing the anterior-posterior pedal foot position on the physiology and performance of well-trained cyclists.Methods:In a crossover study, 10 competitive cyclists completed two maximal incremental and two submaximal tests in either their preferred (control) or a forward (arch) foot position. Maximum oxygen consumption and peak power output were determined from the incremental tests for both foot positions. On two further occasions, cyclists also completed a two-part 60-min submaximal test that required them to maintain a constant power output (equivalent to 60% of their incremental peak power) for 30 min, during which respiratory and blood lactate samples were taken at predetermined intervals. Thereafter, subjects completed a 30-min self-paced maximal effort time trial.Results:Relative to the control, the mean changes (±90% confidence limits) in the arch condition were as follows: maximum oxygen consumption, -0.5% (±2.0%); incremental peak power output, -0.8% (±1.3%); steady-state oxygen consumption at 60%, -2.4% (±1.1%); steady-state heart rate 60%, 0.4% (±1.7%); lactate concentration 60%, 8.7% (±14.4%); and mean time trial power, -1.5% (±2.9%).Conclusions:We conclude that there was no substantial physiological or performance advantage in this group using an arch-cleat shoe position in comparison with a cyclist’s normal preferred condition.


2002 ◽  
Vol 27 (4) ◽  
pp. 336-348 ◽  
Author(s):  
Paul B. Laursen ◽  
Michelle A. Blanchard ◽  
David G. Jenkins

This study examined the effects of four high-intensity interval-training (HIT) sessions performed over 2 weeks on peak volume of oxygen uptake [Formula: see text] the first and second ventilatory thresholds (VT1, VT2) and peak power output (PPO) in highly trained cyclists. Fourteen highly trained male cyclists [Formula: see text] performed a ramped cycle test to determine [Formula: see text]VT1, VT2, and PPO. Subjects were divided equally into a HIT group and a control group. The HIT group performed four HIT sessions (20 × 60 s at PPO, 120 s recovery); the [Formula: see text] test was repeated < 1 wk after the HIT program. Control subjects maintained their regular training program and were reassessed under the same timeline. There was no change in [Formula: see text] for either group; however, the HIT group showed a significantly greater increase in VT1 (+22% vs. −3%), VT2 (+15% vs. −1%), and PPO (+4.3 vs. −4%) compared to controls (all P < .05). This study has demonstrated that HIT can improve VT1, VT2 and PPO, following only four HIT sessions in already highly trained cyclists. Key words: cycling, cyclists, heart rate, oxygen uptake, short-term training, ventilatory threshold


Sign in / Sign up

Export Citation Format

Share Document