Standards for the stress analysis of thin-walled shell structures in cryogenic engineering

1983 ◽  
Vol 15 (1) ◽  
pp. 121-126 ◽  
Author(s):  
B. A. Kuranov ◽  
A. A. Lebedev ◽  
N. V. Novikov ◽  
V. A. Strizhalo
2021 ◽  
Vol 98 (6) ◽  
pp. 63-72
Author(s):  
GIL-OULBE MATHIEU ◽  

After a period of relative calm in the construction and design of thin-walled large-span shells and network multilayer shell structures, which, according to the world's leading architects, began in the 1980 s, the time has come for the expanded use of spatial structures in the architecture of public and industrial buildings. Less commonly, shells are used in small-sized housing construction: ecological villages, noospheric and bionic architecture. The entire 20th century did not stop research on the development of analytical and numerical methods for analyzing shells for strength and stability, for the creation of new building materials. Geometers have created and studied more than 600 analytical surfaces that can be mistaken for the mid-surfaces of civil and mechanical engineering shells. As a result, by the beginning of the 21st century, architects and engineers had all the necessary tools to continue the traditions of the "golden age of shells". The analysis of problems with the use of new forms in parametric architecture, carried out in the article, showed that more than ten classes of surfaces from their classification have not yet found application in architecture and mechanical engineering. It is assumed that the number of applied classes of surfaces will not expand, and new ideas for the shaping of shells will be based on the use of already well-known surfaces, namely, surfaces of revolution, transfer, umbrella, minimal, ruled and wavy surfaces. Mainly, shell structures will be designed taking into account environmental, energy-saving requirements and transforming structures.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fudi Liang ◽  
Zengyou Liang ◽  
Dezhi Deng

When a projectile penetrates a target at high speed, the charge loaded inside the projectile usually bears a high overload, which will consequently severely affect its performance. In order to reduce the overload of the charge during the penetration process, the structure of the projectile was improved by adding two buffers at both ends of the charge. In this study, the mathematical expressions were first gained about the axial buffering force generated by the thin-walled metal tube, aluminum foam, and the composite structure of aluminum foam-filled thin-walled metal tube when they were impacted by the high-speed mass block through reasonable assumptions and stress analysis. During the experiment on the high-speed projectile penetrating reinforced concrete target, the acceleration curve of the charge and the projectile body were obtained. The results show that the maximum overload that the charge was subjected to during the launch and penetration process was significantly reduced, and the change in overload, which the charge was subjected to during the penetration process, was also less obvious.


1960 ◽  
Vol 64 (599) ◽  
pp. 673-682 ◽  
Author(s):  
S. A. Patel ◽  
K. A. V. Pandalai ◽  
B. Venkatraman

In the present era of supersonic and hypersonic flight, structural analysts are well aware of the new problems that arise from the exposure of aircraft and missile structures to elevated temperatures. The task of solving these problems is in its early stage of development. Since the problems are diversified in nature, a different method of solution has to be developed in each case. It is probable that in some cases radically new techniques may have to be devised. Until such time, the structural designer is forced to take a realistic view and use satisfactory extensions of existing methods of analysis.


2015 ◽  
Vol 16 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Alexander Scholzen ◽  
Rostislav Chudoba ◽  
Josef Hegger

AIAA Journal ◽  
2018 ◽  
Vol 56 (4) ◽  
pp. 1647-1661 ◽  
Author(s):  
Enrico Zappino ◽  
Erasmo Carrera

Author(s):  
Yang-chun Deng ◽  
Gang Chen

To save material, the safety factor of pressure vessel design standards is gradually decreased from 5.0 to 2.4 in ASME Boiler and Pressure Vessel Codes. So the design methods of pressure vessel should be more rationalized. Considering effects of material strain hardening and non-linear structural deformation, the elastic-plastic stress analysis is the most suitable for pressure vessels design at present. This paper is based on elastic-plastic theory and considers material strain hardening and structural deformation effects. Elastic-plastic stress analyses of pressure vessels are summarized. Firstly, expressions of load and structural deformation relationship were introduced for thin-walled cylindrical and spherical vessels under internal pressure. Secondly, the plastic instability for thin-walled cylindrical and spherical vessels under internal pressure were analysed. Thirdly, to prevent pressure vessels from local failure, the ductile fracture strain of materials was discussed.


Sign in / Sign up

Export Citation Format

Share Document