RESERVE OF ANALYTICAL SURFACES FOR ARCHITECTURE AND CONSTRUCTION

2021 ◽  
Vol 98 (6) ◽  
pp. 63-72
Author(s):  
GIL-OULBE MATHIEU ◽  

After a period of relative calm in the construction and design of thin-walled large-span shells and network multilayer shell structures, which, according to the world's leading architects, began in the 1980 s, the time has come for the expanded use of spatial structures in the architecture of public and industrial buildings. Less commonly, shells are used in small-sized housing construction: ecological villages, noospheric and bionic architecture. The entire 20th century did not stop research on the development of analytical and numerical methods for analyzing shells for strength and stability, for the creation of new building materials. Geometers have created and studied more than 600 analytical surfaces that can be mistaken for the mid-surfaces of civil and mechanical engineering shells. As a result, by the beginning of the 21st century, architects and engineers had all the necessary tools to continue the traditions of the "golden age of shells". The analysis of problems with the use of new forms in parametric architecture, carried out in the article, showed that more than ten classes of surfaces from their classification have not yet found application in architecture and mechanical engineering. It is assumed that the number of applied classes of surfaces will not expand, and new ideas for the shaping of shells will be based on the use of already well-known surfaces, namely, surfaces of revolution, transfer, umbrella, minimal, ruled and wavy surfaces. Mainly, shell structures will be designed taking into account environmental, energy-saving requirements and transforming structures.

2017 ◽  
Vol 895 ◽  
pp. 45-51 ◽  
Author(s):  
Sergey Nikolayevich Krivoshapko ◽  
Svetlana Lvovna Shambina ◽  
Christian A. Bock Hyeng

Commercial production of synthetic resin has begun at the beginning of the XX century. In 1950s in the USA, small-span dome roofs, scanner assemblies and spherical hangars for radars made of plastic began to appear. Later, invention of reinforced plastics gave a possibility to use them in thin-walled shells for civil and industrial buildings. The subject of the paper associates with today’s renewed interest in thin shells. The modern theoretical base of strength analyses of composite structures give a possibility to design different structures and buildings. The possibility of the application of composites as the basic elements of thin-walled shell structures of industrial and civil purpose are illustrated by the concrete examples. The paper presents information on the well-known composite shells of positive Gaussian curvature in the form of spherical and umbrella domes or with more complex middle surfaces and presents materials that are absent in other publications. The paper contains 9 figures and 15 references.


Author(s):  
Sergey N. Krivoshapko

Relevance. The necessity of division of umbrella surfaces and surfaces of umbrella type into two separated classes is explained in introduction. Earlier, umbrella surfaces and surfaces of umbrella type were in the same class of surfaces because they consist of the identical fragments lying on the surfaces of revolution. Umbrella surfaces are compound surfaces on the base surface of revolution but umbrella-type surfaces are kinematic surfaces formed by continuous movement of a changing curve and that is why taking into account the methods of construction of these surfaces they were divided in two separate classes. The aim of the work is a collection of main publications on all areas of the investigation of umbrella-type shells. Methods. For the determination of principal results of investigation of umbrella-type shells, it is necessary to know differential geometry of surfaces, structural mechanics of thin shells, and approaches used in architecture of spatial structures. Results. In this article, the principal scientific papers on geometry, strength analysis, and offers of applications of thin-walled shells of umbrella type in building and of reflectors of umbrella type for space apparatuses. The accurate parametric equations of some determined surfaces are presented. The approximated computer models of middle surfaces of the real umbrella shells but in the form of umbrella-type surfaces are given. The examples of determination of stress-strain state of thin-walled shells of umbrella type without dividing of the whole shell in identical fragments are shown. New information and materials already known about shells of umbrella type give reasons to suppose that the shells of this type will be claimed by engineers and architects.


Author(s):  
Iraida A. Mamieva

At present, there is a renewed interest in the design and application of wall structures in architecture and construction. With the advent of modern computers, refined methods for calculating shells, new building materials, the development of differential geometry and the rapid growth of numerical methods of calculation, it became possible to create architectural masterpieces from shells of canonical and non-canonical forms, which can be the hallmark of a city or country. This emerging trend among young Russian and foreign specialists inspires optimism among scientists who are researching thin-walled shells. The article considers some results of the work of the Department of Civil Engineering of the Engineering Academy of the Peoples Friendship University of Russia on attracting students to architectural design and involving undergraduates in researches on architecture, the theory of thin-walled spatial structures and their application in construction and architecture. The publications of students in this field are presented.


Author(s):  
N.I. Konstantinova ◽  
◽  
N.V. Smirnov ◽  
O.V. Krivoshapkina ◽  
O.I. Molchadskiy ◽  
...  

Fiber cement finishing materials are widely used in the construction of industrial buildings and structures due to the complex of valuable operational properties. In the Russian market there are fiber-cement panels with a variety of design solutions for their coloring and application of protective coatings. Fiber cement board is a strong and moisture-resistant composite material made from a cement-sand mixture, reinforcing cellulose fibers and special additives. Not being a non-combustible material, the fiber cement boards in accordance with the current mandatory requirements, as a decorative, finishing and facing material for walls and ceilings have restrictions on their use. Existing domestic requirements regarding the methodology for assessing the combustibility of fiber cement products largely narrow the field of using these materials. Therefore, it is advisable to develop the proposals for amending the test methods and the regulatory framework governing their fire-safe extended scope. In the course of this work execution, the main provisions of the regulatory and methodological framework that establish the requirements for the fire-safe use of fiber cement materials are analyzed. Experimental complex studies of fire hazard properties of various types of samples of the fiber cement finishing panels and slabs were carried out. It is established that fiber-cement materials belong to the class of the least fire-hazardous materials. Advisability is determined concerning the introduction to the national regulatory practice of GOST R «Building materials. Test method for fire hazard under thermal exposure with a single burner (SBI)». Classification parameters of the group of non-combustible materials NG2 were established to amend GOST R 57270—2016 (method 1). Classification parameters of the group of non-combustible materials NG2 for making changes in GOST R 57270—2016 (method 1) are established. Proposals were developed to expand the scope of application of the materials and products made of fiber cement as enclosing structures, partitions, and decorative finishes (cladding) in the buildings and structures.


2020 ◽  
Vol 21 ◽  
pp. 24-30
Author(s):  
Suha Ismail Ahmed Ali ◽  
Éva Lublóy

The construction of radiation shielding buildings still developed. Application of ionizing radiations became necessary for different reasons, like electricity generation, industry, medical (therapy treatment), agriculture, and scientific research. Different countries all over the world moving toward energy saving, besides growing the demand for using radiation in several aspects. Nuclear power plants, healthcare buildings, industrial buildings, and aerospace are the main neutrons and gamma shielding buildings. Special design and building materials are required to enhance safety and reduce the risk of radiation emission. Radiation shielding, strength, fire resistance, and durability are the most important properties, cost-effective and environmentally friendly are coming next. Heavy-weight concrete (HWC) is used widely in neutron shielding materials due to its cost-effectiveness and worthy physical and mechanical properties. This paper aims to give an overview of nuclear buildings, their application, and behaviour under different radiations. Also to review the heavy-weight concrete and heavy aggregate and their important role in developing the neutrons shielding materials. Conclusions showed there are still some gaps in improving the heavy-weight concrete (HWC) properties.


Author(s):  
Igor V. Esaulenko ◽  

Wood-based building materials meet the basic requirements of environmentally friendly construction, which is becoming increasingly important in the modern world. However, until recently, they were rarely used in high-rise construction in Russia. CLT became a revolutionary technology, it has proven itself in countries such as Switzerland, Norway, the U.S. and others. In Russia, it has not yet found widespread use, and CLT-panels are in demand only at the market of individual housing construction. Nevertheless, taking into account the positive foreign experience can be an example and become an incentive for more active implementation of modern environmentally friendly materials and technologies in Russia. The aim of the article is to study the possibilities of high-rise wooden house building in Russia based on world practice.


2019 ◽  
Vol 945 ◽  
pp. 64-69 ◽  
Author(s):  
V. Solovyova ◽  
D. Solovyov ◽  
I. Stepanova

The paper presents new results in the building materials area. One of the solutions of the thin-walled elements obtaining can be achieved due to new additive using. The main purpose of the paper was improvement concrete properties for thin-walled constructive elements. The experimental and standard methods have been used and new complex additive for concrete. The research shows that a comprehensive additive consisting of aqueous solution of polycarboxilate polymer, silica sol and potassium nitrite is effective and makes it possible to produce high-efficiency concrete with unique properties: higher compression strength, higher crack resistance, frost resistance, water resistance, abrasion resistance. The study shows that the concrete is chemical resistant. Modified concrete can be recommended for manufacturing critical concrete structures of special purpose, for example high-rise constriction.


2020 ◽  
Vol 992 ◽  
pp. 277-282
Author(s):  
Michail Bruyako ◽  
L. Grigoryeva

In residential and industrial buildings, a special air environment is formed, which contains gas shaped toxic chemical compounds. A significant part of such substances comes from finishing polymer containing materials. Virtually all polymeric materials release certain toxic chemical compounds into the air. The methods and methods of air cleaning are different. One of the ways to solve the problem associated with providing the required standards for the quality of indoor air is the development and use of new efficient building materials using aggregates that have a high sorption capacity. The paper presents the results of a study of the effect of low temperature non-equilibrium plasma on the sorption characteristics of aggregates based on diatomite earth. Studies have been conducted on samples of natural diatomite and quartz sand. When activated by low temperature nonequilibrium plasma, the structure changes, which leads to an increase in the sorption characteristics of the samples under study.


Sign in / Sign up

Export Citation Format

Share Document