An investigation of the stress condition of a billet in the contact area of an oblique mill and also of a cross rolling mill

1976 ◽  
Vol 8 (2) ◽  
pp. 223-229
Author(s):  
�. S. Umanskii ◽  
Yu. L. Kanter
2016 ◽  
Vol 879 ◽  
pp. 2014-2019
Author(s):  
Osamu Umezawa ◽  
Norimitsu Koga

Unalloyed titanium was rolled with 20% reduction in each pass at 293 K using a cross rolling mill, where the upper and lower rolling axes were skewed each other at an angle of 0, 5 or 10 degree with parallel position. Multi-pass flat-rolling was carried out without any lubricants up to the true strain of 1, where two kinds of rolling directions such as tandem (uni-direction for all passes) and reverse (opposite direction in every passes) were adopted. The strain of specimens was increased proportionally as higher passes regardless of the rolling conditions. The transverse direction (TD) split deformation texture in titanium was generally developed under the cross angle of 0 degree. In the present strips of tandem, a main orientation was identified as (-12-18)[10-10]. In the case of tandem with the cross angle of 5 degree, a fiber texture was developed along (-12-18). That is the reason why a rotation in the rolling direction (RD) was overlapped. In the case of reverse with the cross angle of 5 degree, the main orientation was separated into [10-10] and [2-311] that were corresponded to TD and RD splits, respectively.


2013 ◽  
Vol 842 ◽  
pp. 629-633
Author(s):  
Ze Min Liu ◽  
Li Fu

We used to adopt the manual operation on the closed cross rolling mills to produce metal spoons in the traditional ways which is inefficient and hard to handle. The open cross rolling mill developed in this paper enables automation coordinating with the conveyer belt. Productivity can rise through rack structure optimization and parameter adjustment. Compared with the traditional manual operation, the open cross rolling mill is safer, more efficient and more convenient to handle.


1997 ◽  
Vol 68 (5) ◽  
pp. 220-223
Author(s):  
Li Zhiqiang ◽  
Lu Yuqiu ◽  
Lu Shouli

1986 ◽  
Vol 72 (10) ◽  
pp. 1637-1640 ◽  
Author(s):  
Keiichiro YOSHIDA
Keyword(s):  

1993 ◽  
Vol 06 (02) ◽  
pp. 100-104 ◽  
Author(s):  
D. M. Pickles ◽  
C. R. Bellenger

SummaryTotal removal of a knee joint meniscus is followed by osteoarthritis in many mammalian species. Altered load-bearing has been observed in the human knee following meniscectomy but less is known about biochemical effects of meniscectomy in other species. Using pressure sensitive paper in sheep knee (stifle) joints it was found that, for comparable loads, the load-bearing area on the medial tibial condyle was significantly reduced following medial meniscectomy. Also, for loads of between 50 N and 500 N applied to the whole joint, the slope of the regression of contact area against load was much smaller. Following medial meniscectomy, the ability to increase contact area as load increased was markedly reduced.The load bearing area on the medial tibial condyle was reduced following meniscectomy.


Author(s):  
E. N. Shiryaeva ◽  
M. A. Polyakov ◽  
D. V. Terent'ev

Complexity of modern metallurgical plants, presence of great number of horizontal and vertical interactions between their various structural subdivisions makes it necessary to apply a systems analysis to elaborate effective measures for stable development of a plant operation. Among such measures, digitalization of a plant is widespread at present. To implement the digitalization it is necessary to have clear vision about links at all the levels of the technological system of a plant. A terminology quoted, accepted in the existing regulatory documents for defining of conceptions, comprising the technological system. It was shown, that the following four hierarchical levels of technological systems are distinguished: technological systems of operations, technological systems of processes, technological systems of production subdivisions and technological systems of plants. A hierarchical scheme of technological systems of hot-rolled sheet production at an integrated steel plant presented. Existing horizontal and vertical links between the basic plant’s shops shown. Peculiarities of flows of material, energy and information at the operation “rolling” of the technological system “hot rolling of a steel sheet” considered. As a technical system of the technological process of the hot rolling, the hot rolling mill was chosen. A structural diagram of the hot rolling mill was elaborated, the mill being consisted of reheating furnaces, roughing and finishing stand groups, with an intermediate roll-table between them, and down-coilers section. Since the rolling stands are the basic structural elements of the hot rolling mill, structural diagrams of a roughing and a finishing stands were elaborated. Results of the systems analysis of the technological and technical systems, hierarchically linked in the process of steel sheet hot rolling, can be applied for perfection of organization structure of the whole plant, as well as for elaboration mathematical models of a system separate elements functioning, which is a necessary condition for a plant digitalization.


Sign in / Sign up

Export Citation Format

Share Document