Role of luminous bacteria in chitin degradation in the intestine of fish

1989 ◽  
Vol 5 (1) ◽  
pp. 55-59 ◽  
Author(s):  
A. Ramesh ◽  
V. K. Venugopalan
2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Takako Hirano ◽  
Manabu Okubo ◽  
Hironobu Tsuda ◽  
Masahiro Yokoyama ◽  
Wataru Hakamata ◽  
...  

ABSTRACT Vibrio parahaemolyticus RIMD2210633 secretes both chitinase and chitin oligosaccharide deacetylase and produces β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) from chitin. Previously, we reported that GlcNAc-GlcN induces chitinase production by several strains of Vibrio harboring chitin oligosaccharide deacetylase genes (T. Hirano, K. Kadokura, T. Ikegami, Y. Shigeta, et al., Glycobiology 19:1046–1053, 2009). The metabolism of chitin by Vibrio was speculated on the basis of the findings of previous studies, and the role of chitin oligosaccharide produced from chitin has been well studied. However, the role of GlcNAc-GlcN in the Vibrio chitin degradation system, with the exception of the above-mentioned function as an inducer of chitinase production, remains unclear. N,N′-Diacetylchitobiose, a homodisaccharide produced from chitin, is known to induce the expression of genes encoding several proteins involved in chitin metabolism in Vibrio strains (K. L. Meibom, X. B. Li, A. Nielsen, C. Wu, et al., Proc Natl Acad Sci U S A 101:2524–2529, 2004). We therefore hypothesized that GlcNAc-GlcN also affects the expression of enzymes involved in chitin metabolism in the same manner. In this study, we examined the induction of protein expression by several sugars released from chitin using peptide mass fingerprinting and confirmed the expression of genes encoding enzymes involved in chitin metabolism using real-time quantitative PCR analysis. We then confirmed that GlcNAc-GlcN induces the expression of genes encoding many soluble enzymes involved in chitin degradation in Vibrio parahaemolyticus. Here, we demonstrate that GlcNAc-GlcN enhances the chitin-metabolizing ability of V. parahaemolyticus. IMPORTANCE We demonstrate that β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) enhances the chitin-metabolizing ability of V. parahaemolyticus. Members of the genus Vibrio are chitin-degrading bacteria, and some species of this genus are associated with diseases affecting fish and animals, including humans (F. L. Thompson, T. Iida, and J. Swings, Microbiol Mol Biol Rev 68:403–431, 2004; M. Y. Ina-Salwany, N. Al-Saari, A. Mohamad, F.-A. Mursidi, et al., J Aquat Anim Health 31:3–22, 2019). Studies on Vibrio are considered important, as they may facilitate the development of solutions related to health, food, and aquaculture problems attributed to this genus. This report enhances the current understanding of chitin degradation by Vibrio bacteria.


2011 ◽  
Vol 102 (4) ◽  
pp. 407-411 ◽  
Author(s):  
M. Alexandrova ◽  
T. Rozhko ◽  
G. Vydryakova ◽  
N. Kudryasheva
Keyword(s):  

2018 ◽  
Vol 74 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Tian Liu ◽  
Weixing Zhu ◽  
Jing Wang ◽  
Yong Zhou ◽  
Yanwei Duan ◽  
...  

The glycoside hydrolase family 18 chitinases degrade or alter chitin. Multiple catalytic domains in a glycoside hydrolase family 18 chitinase function synergistically during chitin degradation. Here, an insect group III chitinase from the agricultural pestOstrinia furnacalis(OfChtIII) is revealed to be an arthropod-conserved chitinase that contains two nonsynergistic GH18 domains according to its catalytic properties. Both GH18 domains are active towards single-chained chitin substrates, but are inactive towards insoluble chitin substrates. The crystal structures of each unbound GH18 domain, as well as of GH18 domains complexed with hexa-N-acetyl-chitohexaose or penta-N-acetyl-chitopentaose, suggest that the two GH18 domains possess endo-specific activities. Physiological data indicated that the developmental stage-dependent gene-expression pattern ofOfChtIII was the same as that of the chitin synthaseOfChsA but significantly different from that of the chitinaseOfChtI, which is indispensable for cuticular chitin degradation. Additionally, immunological staining indicated thatOfChtIII was co-localized withOfChsA. Thus,OfChtIII is most likely to be involved in the chitin-synthesis pathway.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Sign in / Sign up

Export Citation Format

Share Document