Effect of conditions during storage of infested soil on infection of bait plants by Polymyxa betae and beet necrotic yellow vein virus

1993 ◽  
Vol 99 (5-6) ◽  
pp. 291-301 ◽  
Author(s):  
G. Tuitert
Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 201-201 ◽  
Author(s):  
William M. Wintermantel ◽  
Teresa Crook ◽  
Ralph Fogg

Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV) and vectored by the soilborne fungus Polymyxa betae Keskin, is one of the most economically damaging diseases affecting sugar beet (Beta vulgaris L.). The virus likely originated in Europe and was first identified in California in 1983 (1). It has since spread among American sugar beet production regions in spite of vigorous sanitation efforts, quarantine, and disease monitoring (3). In the fall of 2002, mature sugar beet plants exhibiting typical rhizomania root symptoms, including proliferation of hairy roots, vascular discoloration, and some root constriction (2) were found in several fields scattered throughout central and eastern Michigan. Symptomatic beets were from numerous cultivars, all susceptible to rhizomania. Two to five sugar beet root samples were collected from each field and sent to the USDA-ARS in Salinas, CA for analysis. Hairy root tissue from symptomatic plants was used for mechanical inoculation of indicator plants. Mechanical inoculation produced necrotic lesions on Chenopodium quinoa and systemic infection of Beta vulgaris ssp. macrocarpa, both typical of BNYVV and identical to control inoculations with BNYVV. Symptomatic sugar beet roots were washed and tested using double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) for the presence of BNYVV using standard procedures and antiserum specific for BNYVV (3). Sugar beet roots were tested individually, and samples were considered positive when absorbance values were at least three times those of greenhouse-grown healthy sugar beet controls. Samples were tested from 16 fields, with 10 confirmed positive for BNYVV. Positive samples had mean absorbance values ranging from 0.341 to 1.631 (A405nm) after 30 min. The mean healthy control value was 0.097. Fields were considered positive if one beet tested positive for BNYVV, but in most cases, all beets tested from a field were uniformly positive or uniformly negative. In addition, soil-baiting experiments were conducted on seven of the fields. Sugar beet seedlings were grown in soil mixed with equal parts of sand for 6 weeks and were subsequently tested using DAS-ELISA for BNYVV. Results matched those of the root sampling. Fields testing positive for BNYVV were widely dispersed within a 100 square mile (160 km2) area including portions of Gratiot, Saginaw, Tuscola, and Sanilac counties in the central and eastern portions of the Lower Peninsula of Michigan. The confirmation of rhizomania in sugar beet from the Great Lakes Region marks the last major American sugar beet production region to be diagnosed with rhizomania disease, nearly 20 years after its discovery in California (1). In 2002, there were approximately 185,000 acres (approximately 75,00 ha) of sugar beet grown in the Great Lakes Region, (Michigan, Ohio, and southern Ontario, Canada). The wide geographic distribution of infested fields within the Michigan growing area suggests the entire region should monitor for symptoms, increase rotation to nonhost crops, and consider planting rhizomania resistant sugar beet cultivars to infested fields. References:(1) J. E. Duffus et al. Plant Dis. 68:251, 1984. (2) J. E. Duffus. Rhizomania. Pages 29–30 in: Compendium of Beet Diseases and Insects, E. D. Whitney and J. E. Duffus eds. The American Phytopathological Society, St. Paul, MN, 1986. (3) G. C. Wisler et al. Plant Dis. 83:864, 1999.


EPPO Bulletin ◽  
1989 ◽  
Vol 19 (3) ◽  
pp. 517-525 ◽  
Author(s):  
J. P. GOFFART ◽  
V. HORTA ◽  
H. MARAITE

1994 ◽  
Vol 31 (1) ◽  
pp. 1-6 ◽  
Author(s):  
H. Paul ◽  
B. Henken ◽  
O. E. Scholten ◽  
Th. S. M. De Bock ◽  
W. Lange

Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 640-640 ◽  
Author(s):  
H.-Y. Liu ◽  
B. Mou ◽  
K. Richardson ◽  
S. T. Koike

In 2009, plants from two spinach (Spinacia oleracea) experimental fields in Monterey County and one commercial spinach field in Ventura County of California exhibited vein-clearing, mottling, interveinal yellowing, and stunting symptoms. For experimental fields, up to 44% of spinach plants have symptoms. With a transmission electron microscope, rigid rod-shaped particles with central canals were observed from plant sap of the symptomatic spinach. Analysis with a double-antibody sandwich-ELISA assay for Beet necrotic yellow vein virus (BNYVV) showed that all 10 symptomatic plants we tested were positive and 5 asymptomatic plants were negative. Symptomatic spinach from both counties was used for mechanical transmission experiments. Chenopodium quinoa, Tetragonia expansa, and Beta vulgaris (sugar beet) showed chlorotic local lesions and B. macrocarpa and spinach showed vein-clearing, mottling, and systemic infections. To further confirm the presence of BNYVV, reverse transcription (RT)-PCR was conducted. Total RNA was extracted from field- and mechanically inoculated symptomatic spinach plants using an RNeasy Plant Kit (Qiagen Inc., Valencia, CA) and used as a template in RT-PCR. Forward and reverse primers specific to the BNYVV RNA-3 P25 protein gene from the beet isolate were used (2). Amplicons of the expected size (approximately 860 bp) were obtained. Four RT-PCR products were sequenced and the sequences were identical (GenBank Accession No. GU135626). Sequences from the spinach plants had 97 to 99% nucleotide and 94 to 100% amino acid identity with BNYVV RNA-3 P25 protein sequences available in the GenBank. On the basis of the data from electron microscopy, indicator plants, serology, and cDNA sequencing, the virus was identified as BNYVV. BNYVV has been reported from spinach fields in Italy (1). To our knowledge, this is the first report of BNYVV occurring naturally on spinach in California. Since BNYVV is transmitted by the zoospores of the soil-inhabiting plasmodiophorid Polymyxa betae, it could be a new threat to spinach production in the state. References: (1) C. R. Autonell et al. Inf. Fitopatol. 45:43, 1995. (2) H.-Y. Liu and R. T. Lewellen, Plant Dis. 91:847, 2007.


2005 ◽  
Vol 18 (3) ◽  
pp. 194-204 ◽  
Author(s):  
Ida Bagus Andika ◽  
Hideki Kondo ◽  
Tetsuo Tamada

In plants, RNA silencing is part of a defense mechanism against virus infection but there is little information as to whether RNA silencing-mediated resistance functions similarly in roots and leaves. We have obtained transgenic Nicotiana benthamiana plants encoding the coat protein readthrough domain open reading frame (54 kDa) of Beet necrotic yellow vein virus (BNYVV), which either showed a highly resistant or a recovery phenotype following foliar rub-inoculation with BNYVV. These phenotypes were associated with an RNA silencing mechanism. Roots of the resistant plants that were immune to foliar rub-inoculation with BNYVV could be infected by viruliferous zoospores of the vector fungus Polymyxa betae, although virus multiplication was greatly limited. In addition, virus titer was reduced in symptomless leaves of the plants showing the recovery phenotype, but it was high in roots of the same plants. Compared with leaves of silenced plants, higher levels of transgene mRNAs and lower levels of transgene-derived small interfering RNAs (siRNAs) accumulated in roots. Similarly, in nontransgenic plants inoculated with BNYVV, accumulation level of viral RNA-derived siRNAs in roots was lower than in leaves. These results indicate that the RNA silencing-mediated resistance to BNYVV is less effective in roots than in leaves.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 847-851 ◽  
Author(s):  
H.-Y. Liu ◽  
R. T. Lewellen

Beet necrotic yellow vein virus (BNYVV) is the causal agent of rhizomania in sugar beet (Beta vulgaris). The virus is transmitted by the plasmodiophorid Polymyxa betae. The disease is controlled primarily by the use of partially resistant cultivars. During 2003 and 2004 in the Imperial Valley of California, partially resistant sugar beet cultivars with Rz1 allele seemed to be compromised. Field trials at Salinas, CA have confirmed that Rz1 has been defeated by resistance-breaking isolates. Distinct BNYVV isolates have been identified from these plants. Rhizomania-infested sugar beet fields throughout the United States were surveyed in 2004–05. Soil surveys indicated that the resistance-breaking isolates not only existed in the Imperial Valley and San Joaquin Valley of California but also in Colorado, Idaho, Minnesota, Nebraska, and Oregon. Of the soil samples tested by baited plant technique, 92.5% produced infection with BNYVV in ‘Beta 6600’ (rz1rz1rz1), 77.5% in ‘Beta 4430R’ (Rz1rz1), 45.0% in ‘Beta G017R’ (Rz2rz2), and 15.0% in ‘KWS Angelina’ (Rz1rz1+Rz2rz2). Analyses of the deduced amino acid sequence of coat protein and P-25 protein of resistance-breaking BNYVV isolates revealed the high percentage of identity with non-resistance-breaking BNYVV isolates (99.9 and >98.0%, respectively). The variable amino acids in P-25 proteins were located at the residues of 67 and 68. In the United States, the two amino acids found in the non-resistance-breaking isolates were conserved (AC). The resistance-breaking isolates were variable including, AF, AL, SY, VC, VL, and AC. The change of these two amino acids cannot be depended upon to differentiate resistance-breaking and non-resistance-breaking isolates of BNYVV.


2016 ◽  
Vol 40 ◽  
pp. 120-126 ◽  
Author(s):  
Nazlı Dide KUTLUK YILMAZ ◽  
Emine KAYA ALTOP ◽  
Colin James PHILLIPPO ◽  
Hüsrev MENNAN

Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 423-423 ◽  
Author(s):  
J. A. M. Rezende ◽  
V. M. Camelo ◽  
D. Flôres ◽  
A. P. O. A. Mello ◽  
E. W. Kitajima ◽  
...  

Beet necrotic yellow vein virus (BNYVV) is an economically important pathogen of sugar beet (Beta vulgaris var. saccharifera) in several European, and Asian countries and in the United States (3). The virus is transmitted by the soil-inhabiting plasmodiophorid Polymyxa betae and causes the rhizomania disease of sugar beet. In November 2012, plants of B. vulgaris subsp. vulgaris cv. Boro (red table beet) exhibiting mainly severe characteristic root symptom of rhizomania were found in a commercial field located in the municipality of São José do Rio Pardo, State of São Paulo, Brazil. No characteristic virus-inducing foliar symptom was observed on diseased plants. The incidence of diseased plants was around 70% in the two visited crops. As the hairy root symptom is indicative of infection by BNYVV, the present study aimed to detect and identify this virus associated with the diseased plants. Preliminary leaf dip analysis by transmission electron microscopy revealed the presence of very few benyvirus-like particles. Total RNA was extracted from roots of three symptomatic plants and one asymptomatic plant according to Toth et al. (3). One-step reverse-transcription–polymerase chain reaction (RT-PCR) was performed as described by Morris et al. (2) with primers that amplify part of the coat protein gene at RNA2. The initial assumption that the hairy root symptom was associated with BNYVV infection was confirmed by the amplification of a fragment of ~500 bp from all three symptomatic samples. No amplicon was obtained from the asymptomatic control plant. Amplicons were directly sequenced, and the consensus nucleotide and deduced amino acid sequences showed 100% identity. The nucleotide sequence for one amplicon (Accession No. KM433683) was compared with other sequences deposited in GenBank. The nucleotide (468 nt) and deduced amino acid (156 aa) sequences shared 93 to 100 and 97 to 99% identity, respectively with the corresponding nucleotide and amino acid sequences for other isolates of type A of BNYVV. The virus was transmitted to three of 10 red table beet plants inoculated with contaminated soil, and infection was confirmed by nested RT-PCR, as described by Morris et al. (1), and nucleotide sequencing. This is the first report on the occurrence of BNYVV in Brazil, which certainly will affect the yield of red table beet in the producing region. Therefore, mapping of the occurrence of BNYVV in red table beet-producing areas in Brazil for containment of the spread of the virus is urgent. In the meantime, precautions should be taken to control the movement of contaminated soil and beet roots, carrots, or any vegetable grown on infested land that might introduce the virus to still virus-free regions. References: (1) J. Morris et al. J. Virol. Methods 95:163, 2001. (2) D. D. Sutic et al. Handbook of Plant Virus Diseases. CRC Press, Boca Raton, Florida, 1999. (3) I. K. Toth et al. Methods for the Detection and Quantification of Erwinia carotovora subsp. atroseptica (Pectobacterium carotovorum subsb. atrosepticum) on Potatoes: A Laboratory Manual. Scottish Crop Research Institute, Dundee, Scotland, 2002.


Sign in / Sign up

Export Citation Format

Share Document