Analytical investigation of Bénard-Marangoni convection heat transfer in a shallow cavity filled with two immiscible fluids

1991 ◽  
Vol 48 (1) ◽  
pp. 35-53 ◽  
Author(s):  
C. H. Wang ◽  
Mihir Sen ◽  
P. Vasseur
1970 ◽  
Vol 92 (3) ◽  
pp. 345-350 ◽  
Author(s):  
E. S. Nowak ◽  
A. K. Konanur

Heat transfer to supercritical water (at 3400 psia in the pseudocritical region) by stable laminar free convection from an isothermal, vertical flat plate was analytically investigated. The actual variations with temperature of all or some of the thermophysical properties of supercritical water were taken into consideration. Fair agreement was found between the analytical values of this paper and existing experimental data.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Yanhai Lin ◽  
Liancun Zheng ◽  
Xinxin Zhang

This paper presents an investigation for magnetohydrodynamics (MHD) thermocapillary Marangoni convection heat transfer of an electrically conducting power-law fluid driven by temperature gradient. The surface tension is assumed to vary linearly with temperature and the effects of power-law viscosity on temperature fields are taken into account by modified Fourier law for power-law fluids (proposed by Pop). The governing partial differential equations are converted into ordinary differential equations and numerical solutions are presented. The effects of the Hartmann number, the power-law index and the Marangoni number on the velocity and temperature fields are discussed and analyzed in detail.


2017 ◽  
Vol 44 ◽  
pp. 497-507 ◽  
Author(s):  
Jinhu Zhao ◽  
Liancun Zheng ◽  
Xuehui Chen ◽  
Xinxin Zhang ◽  
Fawang Liu

1975 ◽  
Vol 97 (2) ◽  
pp. 226-230 ◽  
Author(s):  
V. S. Sastry ◽  
N. M. Schnurr

A numerical solution is carried out for heat transfer to fluids near the thermodynamic critical point for turbulent flow through a circular tube with constant wall heat flux. An adaptation of the Patankar-Spalding implicit finite difference marching procedure is used. Agreement of the results with experimental data for water and carbon dioxide show the solution to be quite accurate very near the critical point provided the wall temperature at inlet is less than the pseudocritical temperature of the fluid.


Sign in / Sign up

Export Citation Format

Share Document