Kinetics of nitrogen- or phosphorus-limited growth and effects of growth conditions on nutrient uptake inChattonella antiqua

1985 ◽  
Vol 41 (6) ◽  
pp. 381-387 ◽  
Author(s):  
Yasuo Nakamura
1997 ◽  
Vol 481 ◽  
Author(s):  
R. R. Chromik ◽  
W. K. Neils ◽  
E. J. Cotts

ABSTRACTThe kinetics of the formation of Cu3Si in Cu/a-Si diffusion couples have been investigated by means of differential scanning calorimetry and x-ray diffraction. Multilayered composites of average stoichiometry Cu3Si were prepared by sputter deposition with individual layer thicknesses varying in different samples between 2 and 100 nm. We observed diffusion limited growth of Cu3 Si upon annealing these diffusion couples below 500 K. Reaction constants were measured for a temperature range of 455 to 495 K for thicknesses of growing Cu3Si between 2.6 and 80 nm. The temperature dependence of the reaction constant, k2, was characterized as k2 = k0 exp(− Ea/kbT) with activation energy, Ea = 1.0 eV/atom and pre-factor, k0 = 1.9×10−3 cm2/s.


1988 ◽  
Vol 20 (8-9) ◽  
pp. 125-131 ◽  
Author(s):  
H. Naes ◽  
H. C. Utkilen ◽  
A. F. Post

Environmental factors affecting geosmin production by Oscillatoria brevis have been investigated under laboratory conditions using continuous culture techniques. Transition from light to nutrient limited growth conditions caused a two-fold decrease in geosmin production. However, geosmin content increased relative to pigment content (chlorophyll a and carotenoids). It has been suggested that geosmin biosynthesis in O. brevis proceeds via the isoprenoid pathway as was found in actinomycetes. Accordingly, we investigated the effect of inhibitors of the intermediate stages in this synthetic pathway in order to study the regulation of geosmin production in relation to pigment synthesis. It was concluded that geosmin seemed to function as an overflow metabolite in this pathway. Due to the only modest changes in geosmin production per dry weight compared to changes in biomass levels during light- or nutrient limited growth, contamination of eutrophic fresh waters with geosmin appears to depend mainly on the species present and its biomass level and only to a limited extent on nutrient enhanced synthesis.


2011 ◽  
Vol 21 (2) ◽  
pp. 329-333 ◽  
Author(s):  
Marcella A. A. Carneiro ◽  
Fúlvio Aurélio de M. Freire ◽  
Eliane Marinho-Soriano
Keyword(s):  

2019 ◽  
Vol 116 (4) ◽  
pp. 1180-1184 ◽  
Author(s):  
Hyerim Hwang ◽  
David A. Weitz ◽  
Frans Spaepen

We study the kinetics of crystal growth and melting of two types of colloidal crystals: body-centered cubic (BCC) crystals and face-centered cubic (FCC) crystals. A dielectrophoretic “electric bottle” confines colloids, enabling precise control of the motion of the interface. We track the particle motion, and by introducing a structural order parameter, we measure the jump frequencies of particles to and from the crystal and determine from these the free-energy difference between the phases and the interface mobility. We find that the interface is rough in both BCC and FCC cases. Moreover, the jump frequencies correspond to those expected from the random walk of the particles, which translates to collision-limited growth in metallic systems. The mobility of the BCC interface is greater than that of the FCC interface. In addition, contrary to the prediction of some early computer simulations, we show that there is no significant asymmetry between the mobilities for crystallization and melting.


2017 ◽  
Vol 114 (37) ◽  
pp. E7796-E7802 ◽  
Author(s):  
Brent Cezairliyan ◽  
Frederick M. Ausubel

Pathogenic bacteria secrete toxins and degradative enzymes that facilitate their growth by liberating nutrients from the environment. To understand bacterial growth under nutrient-limited conditions, we studied resource allocation between cellular and secreted components by the pathogenic bacteriumPseudomonas aeruginosaduring growth on a protein substrate that requires extracellular digestion by secreted proteases. We identified a quantitative relationship between the rate of increase of cellular biomass under nutrient-limiting growth conditions and the rate of increase in investment in secreted proteases. Production of secreted proteases is stimulated by secreted signals that convey information about the utility of secreted proteins during nutrient-limited growth. Growth modeling using this relationship recapitulated the observed kinetics of bacterial growth on a protein substrate. The proposed regulatory strategy suggests a rationale for quorum-sensing–dependent stimulation of the production of secreted enzymes whereby investment in secreted enzymes occurs in proportion to the utility they confer. Our model provides a framework that can be applied toward understanding bacterial growth in many environments where growth rate is limited by the availability of nutrients.


2004 ◽  
Vol 23 (1) ◽  
pp. 137-150 ◽  
Author(s):  
François M. M. Morel
Keyword(s):  

Author(s):  
Michael J. Truex ◽  
Brent M. Peyton ◽  
Nancy B. Valentine ◽  
Yuri A. Gorby

Sign in / Sign up

Export Citation Format

Share Document