The Formation of Cu3Si from Cu/a-Si Multilayers

1997 ◽  
Vol 481 ◽  
Author(s):  
R. R. Chromik ◽  
W. K. Neils ◽  
E. J. Cotts

ABSTRACTThe kinetics of the formation of Cu3Si in Cu/a-Si diffusion couples have been investigated by means of differential scanning calorimetry and x-ray diffraction. Multilayered composites of average stoichiometry Cu3Si were prepared by sputter deposition with individual layer thicknesses varying in different samples between 2 and 100 nm. We observed diffusion limited growth of Cu3 Si upon annealing these diffusion couples below 500 K. Reaction constants were measured for a temperature range of 455 to 495 K for thicknesses of growing Cu3Si between 2.6 and 80 nm. The temperature dependence of the reaction constant, k2, was characterized as k2 = k0 exp(− Ea/kbT) with activation energy, Ea = 1.0 eV/atom and pre-factor, k0 = 1.9×10−3 cm2/s.

1995 ◽  
Vol 398 ◽  
Author(s):  
W. K. Neils ◽  
R. R. Chromik ◽  
K. F. Dreyer ◽  
D. Grosman ◽  
E. J. Cotts

ABSTRACTWe find differential scanning calorimetry to be suitable for the characterization of the energetics and kinetics of interdiflusion in solder/metal diffusion couples. Differential scanning calorimetry studies of interdiffusion in Cu/Cu6Sn5 diffusion couples have shown that the driving force for interdiffusion is similar for thin film composites and for bulk diffusion couples. The heat of formation of Cu3Sn from Cu6Sn5 and Cu thin films was found to be ΔHr = −4.3 + 0.3 kJ/mol. Portions of our differential scanning calorimetry scans are identified with diffusion limited growth of Cu3Sn. From these calorimetry data we have estimated D(cm2 / s) = Do exp(−E / kbT), where kb is Boltzmann's constant, D0 = 3.2 × 10–2 cm2/s, and E=0.87 eV/atom.


1995 ◽  
Vol 398 ◽  
Author(s):  
R.R. Chromik ◽  
E. J. Cotts

ABSTRACTUsing differential scanning calorimetry, supplemented by measurements from scanning electron microscopy images, we have investigated solid state reactions in Pd/Sn multilayer composites to form PdSn4 and PdSn3. Planar diffusion couples of Pd and Sn were prepared by means of mechanical co-deformation in a rolling mill. A phase formation sequence was determined using differential scanning calorimetry and x-ray diffraction. Growth of the PdSru phase was studied from room temperature to the melting point of Sn. For temperatures between 430 and 460K diffusion limited growth of PdSn4 was observed. From heat flow data over this limited temperature range, the form of the reaction constant was found to be k2 −k0 exp(−Ea / kbT), where k0= 0.16 cm2/s and Εn= 0.8 eV/atom. Also determined was a heat of formation, ΔHf = −27±1 kJ/mol for PdSn4 from Pd and Sn.


2020 ◽  
Vol 869 ◽  
pp. 273-279
Author(s):  
Marina A. Gorbunova ◽  
Denis V. Anokhin ◽  
Valentina A. Lesnichaya ◽  
Alexander A. Grishchuk ◽  
Elmira R. Badamshina

A synthesis of new di-and triblock polyurethane thermoplastic copolymers containing different mass ratio of two crystallizing blocks - poly (1,4-butylene glycol) adipate and poly-ε-caprolactone diols was developed. Using combination of danamometric analysis, IR-spectroscopy, differential scanning calorimetry and X-ray diffraction, the effect of the soft block composition and crystallization conditions on crystal structure and thermal behavior of the obtained polymers have been studied. For the triblock copolymers we have shown a possibility of control the kinetics of material hardening and final mechanical characteristics due to the mutual influence of polydiols during crystallization. In the result, the second crystallizing component allows to control amount, structure and quality of crystalline domains in polyurethanes by variation of crystallization conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
R. K. Koul ◽  
Shivani Suri ◽  
Vishal Singh ◽  
K. K. Bamzai

Synthesis of mixed gadolinium calcium heptamolybdate (GdCaHM) system in silica gel medium using single gel single tube technique has been successfully achieved. The grown crystal exhibits various morphologies, which includes spherulites, multifaceted, and square platelets. The nature of the grown material was established by X-ray diffraction (XRD) studies. Fourier transform infrared spectroscopy (FTIR) study signifies the presence of heptamolybdate (Mo7O24) and water symmetry structure, whereas energy dispersive X-ray analysis (EDAX) establishes the stoichiometric of the grown crystal as GdCaMo7O24·8H2O. The thermal behaviour was studied using the thermoanalytical techniques, which include thermogravimetry (TG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). Results obtained on the application of TG based models, namely, Horowitz-Metzger, Coats-Redfern, and Piloyan-Novikova, suggest the contracting cylindrical model as the relevant model for the thermal decomposition of the material. The kinetic parameters, namely, the order of reaction (n), activation energy (Ea), frequency factor (Z), and entropy (ΔS*), were also calculated using these three models.


2014 ◽  
Vol 32 (3) ◽  
pp. 385-390
Author(s):  
Aysel Kantürk Figen ◽  
Bilge Coşkuner ◽  
Sabriye Pişkin

AbstractIn the present study, hydrogen desorption properties of magnesium hydride (MgH2) synthesized from modified waste magnesium chips (WMC) were investigated. MgH2 was synthesized by hydrogenation of modified waste magnesium at 320 °C for 90 min under a pressure of 6 × 106 Pa. The modified waste magnesium was prepared by mixing waste magnesium with tetrahydrofuran (THF) and NaCl additions, applying mechanical milling. Next, it was investigated by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) techniques in order to characterize its structural properties. Hydrogen desorption properties were determined by differential scanning calorimetry (DSC) under nitrogen atmosphere at different heating rates (5, 10, and 15 °C/min). Doyle and Kissenger non-isothermal kinetic models were applied to calculate energy (Ea) values, which were found equal to 254.68 kJ/mol and 255.88 kJ/mol, respectively.


1996 ◽  
Vol 460 ◽  
Author(s):  
M. T. Clavaguera-Mora ◽  
J. Zhu ◽  
M. Meyer ◽  
L. Mendoza-Zelis ◽  
F. H. Sanchez ◽  
...  

ABSTRACTThe evolution of the B2-AlFe phase during mechanical grinding in Ar has been examined as a function of milling time by X-Ray diffraction, transmission Mössbauer spectroscopy and differential scanning calorimetry. Short and long range disorder was observed to increase with the mechanical treatment up to the attainment of a steady state. The evolution of the long range order parameter and of the local atomic configurations at Fe sites were analyzed in terms of possible mechanisms for milling induced disordering. The kinetics of the thermal reordering was studied under continuous heating and isothermal calorimetrie regimes. Modeling of the reordering processes by diffusion controlled growth of pre-existing ordered grains is presented as well as the estimated values of both the enthalpy and the activation energy of the reordering process. The results are consistent with a non uniform distribution of disorder throughout the sample and will be compared with preceding information on related systems.


2011 ◽  
Vol 172-174 ◽  
pp. 646-651 ◽  
Author(s):  
Gamra Tellouche ◽  
Khalid Hoummada ◽  
Dominique Mangelinck ◽  
Ivan Blum

The phase formation sequence of Ni silicide for different thicknesses is studied by in situ X ray diffraction and differential scanning calorimetry measurements. The formation of a transient phase is observed during the formation of δ-Ni2Si; transient phases grow and disappear during the growth of another phase. A possible mechanism is proposed for the transient phase formation and consumption. It is applied to the growth and consumption of θ-Ni2Si. A good accordance is found between the proposed model and in situ measurement of the kinetics of phase formation obtained by x-ray diffraction and differential scanning calorimetry for higher thickness.


2014 ◽  
Vol 960-961 ◽  
pp. 161-164 ◽  
Author(s):  
Juan Mu ◽  
Hai Feng Zhang

Glass forming ability and crystallization kinetics of Al-Mg-Ni-La alloys have been investigated by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The maximum thickness achievable in glasses of Al76Mg11Ni8La5and Al69Mg18Ni8La5ribbons were 200 and 120 μm, respectively. The crystallization temperature and peak temperature indicated by DSC measurements displayed dependence on the heating rate during continuous heating, and were coincident with Lanoka’s relationship. The activation energies for the crystallization reactionExwere obtained from the Kissinger’s equation. The results show the Mg addition is beneficial to the thermal stability of the amorphous phase.


1990 ◽  
Vol 202 ◽  
Author(s):  
S. M. Heald ◽  
J. K. D. Jayanetti ◽  
R. C. Budhani

ABSTRACTThe amorphous to crystalline transformation of Ge in Al/Ge thin film couples has been studied using glancing angle EXAFS, x-ray reflectivity and diffraction. It was found that crystallization occurs at a much lower temperature (118-150 °C) than for bulk Ge, and initiates at the Al/Ge interface. X-ray diffraction studies were made at 152 °C to study the kinetics of the reaction. After an initial period we find good agreement with a square root dependence of the time, characteristic of a diffusion limited reaction.


Sign in / Sign up

Export Citation Format

Share Document