Morphological evidence of mast cell degranulation in an animal model of acid-induced esophageal mucosal injury

1995 ◽  
Vol 40 (8) ◽  
pp. 1651-1658 ◽  
Author(s):  
Robert L. Barclay ◽  
Partosh K. Dinda ◽  
Gerald P. Morris ◽  
William G. Paterson
2021 ◽  
Vol 3 (1) ◽  
pp. 1-5
Author(s):  
Raisa Ferreira Costa ◽  
Emanuela Paz Rosas ◽  
Daniela Araújo de Oliveira ◽  
Marcelo Moraes Valença

Capsaicin is able to induce mast cell degranulation, an event probably related to the pathophysiologyof a migraine attack. The present review study aimed to address the mechanisms of action of capsaicin and other chemical inducers in mast cell degranulation and an interaction of nerves and events that happen in the dura mater with the activation of mast cells. A survey was carried out in the literature, from 1980 to 2019, in different databases, using the following terms: capsaicin, mast cell and dura mater. 36 articles were selected for this review. Studies indicate that the main mechanisms of action of capsaicin are chemical induction through the activation of TRPV1 channels,allowing calcium influx into neurons in the trigeminal ganglion of the dura mater, activating mast cell degranulation, releasing pro-inflammatory (e.g., histamine, oxide nitric) and vasoactive (e.g., CGRP and substance P) substances. Therefore, the use of capsaicin may be a tool to be used in an animal model to better understand the pathophysiology of migraine. 


1971 ◽  
Vol 33 (3) ◽  
pp. 223-228
Author(s):  
Shojiro MORIYASU

2021 ◽  
Vol 22 (14) ◽  
pp. 7360
Author(s):  
Angie De La Cruz ◽  
Aubrey Hargrave ◽  
Sri Magadi ◽  
Justin A. Courson ◽  
Paul T. Landry ◽  
...  

Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the β2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.


Sign in / Sign up

Export Citation Format

Share Document