High-performance LC Bi-electrode amperometric flow-through detector with a carbon-dropping mercury sensor-electrode system

1983 ◽  
Vol 17 (6) ◽  
pp. 322-327 ◽  
Author(s):  
W. Kutner ◽  
W. Kemula
2017 ◽  
Vol 5 (4) ◽  
pp. 3329-3338 ◽  
Author(s):  
Hui Wang ◽  
Tingting Yan ◽  
Liyi Shi ◽  
Guorong Chen ◽  
Jianping Zhang ◽  
...  

Author(s):  
Shiying Lin ◽  
Lanlan Mo ◽  
Feijun Wang

Abstract A facile and environmentally friendly approach to produce self-doped hierachically porous carbon as electrode material for high-performance supercapacitor was demonstrated. 3D honeycomb-like hierarchically porous carbon was successfully obtained by one-step carbonization and activation of sodium carboxymethyl cellulose (CMC) via K2CO3. With the optimized temperature of carbonization and activation, the porous carbon material achieved well-shaped hierarchically pores (micro-, meso and macropores) like a honeycomb, ultrahigh specific surface area (1666 m2·g-1), as well as highly O-self-doping (3.6 at.%), endowing an excellent electrochemical properties for the electrode in three-electrode system. The porous carbon electrode material delivered a high specific capacitance of 300.8 F·g-1 at 1 A·g-1, an eminent rate capability of 228.4 F·g-1 at the current density up to 20 A·g-1 and outstanding cycle stability of 94.3% retention after 10000 cycles. Therefore, the CMC derived hierarchical porous carbon activated by K2CO3 would have promising foreground in application of supercapacitors.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pengfei Hao ◽  
Yanjie Yi ◽  
Youming Li ◽  
Yi Hou

Abstract A green and economically viable route without any additional activation agents and templates has been developed to synthesize biomass-derived nanoporous carbon for superior electric double-layer capacitors via direct pyrolysis of dried black liquor powders, which is the main waste in pulping and paper-making industry. The resulting carbon materials present hierarchical porosity and moderate specific surface area of 1134  m 2 g − 1 {\text{m}^{2}}\hspace{0.1667em}{\text{g}^{-1}} , as well as multi-heteroatoms co-doping such as N, S, Na and K, which exist originally in black liquor. When evaluated as electrode materials for supercapacitors in 6 M KOH aqueous electrolyte, the-prepared carbon samples deliver a significantly high gravimetric capacitance of 331  F g − 1 \text{F}\hspace{0.1667em}{\text{g}^{-1}} at 0.5  A g − 1 \text{A}\hspace{0.1667em}{\text{g}^{-1}} in a three-electrode system. Moreover, the fabricated symmetric supercapacitor also possesses a gravimetric capacitance of 211  F g − 1 \text{F}\hspace{0.1667em}{\text{g}^{-1}} at 0.5  A g − 1 \text{A}\hspace{0.1667em}{\text{g}^{-1}} , with an impressive long-term cycling stability of 92 % capacitance retention after 3000 cycles. This work explores a suitable and scalable approach for mass production of high-performance electrode materials with industrial wastes on the base of cost-efficiency and environment-friendship.


2012 ◽  
Vol 186 ◽  
pp. 214-218 ◽  
Author(s):  
Robert Ciobanu ◽  
Maurizio Repetto ◽  
Octavian Dontu ◽  
Fabio Freschi ◽  
Tudor Prisecaru

Worldwide magnetism was considered a "stepchild" of electromagnetism, but lately this has changed, and scientists give it great importance today, making a series of studies in which it is the main "actor". Regarding the magnetostatic field, the appearance of magnets with high performance, has led the development of permanent magnet structures with different technical applications, which successfully replace electromagnets. In this paper our main objective was to design and test a device used for magnetic treatment of fuel fluid which flow through pipes before burner to improve combustion dynamics and decrease the released fumes.


2004 ◽  
Vol 126 (4) ◽  
pp. 528-534 ◽  
Author(s):  
S. B. Sathe ◽  
B. G. Sammakia

The results of a study of a new and unique high-performance air-cooled impingement heat sink are presented. An extensive numerical investigation of the heat sink performance is conducted and is verified by experimental data. The study is relevant to cooling of high-power chips and modules in air-cooled environments and applies to workstations or mainframes. In the study, a rectangular jet impinges on a set of parallel fins and then turns into cross flow. The effects of the fin thickness, gap nozzle width and fin shape on the heat transfer and pressure drop are investigated. It is found that pressure drop is reduced by cutting the fins in the central impingement zone without sacrificing the heat transfer due to a reduction in the extent of the stagnant zone. A combination of fin thicknesses of the order of 0.5 mm and channel gaps of 0.8 mm with appropriate central cutout yielded heat transfer coefficients over 1500 W/m2 K at a pressure drop of less than 100 N/m2, as is typically available in high-end workstations. A detailed study of flow-through heat sinks subject to the same constraints as the impingement heat sink showed that the flow-through heat sink could not achieve the high heat transfer coefficients at a low pressure drop.


2016 ◽  
Vol 4 (13) ◽  
pp. 4908-4919 ◽  
Author(s):  
Hui Wang ◽  
Tingting Yan ◽  
Peiying Liu ◽  
Guorong Chen ◽  
Liyi Shi ◽  
...  

3D graphene architectures with ample micro-/mesopores across the highly interconnected macroporous walls exhibit a good performance in capacitive deionization.


RSC Advances ◽  
2018 ◽  
Vol 8 (47) ◽  
pp. 26818-26827 ◽  
Author(s):  
Seyed Abbas Rahimi ◽  
Parviz Norouzi ◽  
Mohammad Reza Ganjali

In this study, Co(OH)2-reduced graphene oxide has been synthesized using a simple and rapid one-step cathodic electrodeposition method in a two electrode system at a constant current density on a stainless steel plate, and then characterized as a supercapacitive material on Ni foam.


Author(s):  
Paul A. Berman ◽  
Jeffrey A. Hynds

In the traditional pressurized fluid bed (PFB) power system, the PFB is located in the highest pressure portion of the power cycle, Figure 1. This results in the smallest volume flow through the PFB, but also requires the combustion products to flow through the entire expansion train. This is not expected to be a major problem when the PFB temperature is limited to 1600°F for effective sulfur capture and to avoid alkali vapors in the products of combustion. However, when topping combustion is added ahead of the turbine so as to reach state-of-the-art turbine inlet temperatures, a major risk for turbine corrosion and fouling develops.


Sign in / Sign up

Export Citation Format

Share Document