Tests of data assimilation and data initialization for the purposes of short-range weather forecast

1994 ◽  
Vol 38 (3) ◽  
pp. 316-324
Author(s):  
Zbyněk Sokol
Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 587
Author(s):  
Magnus Lindskog ◽  
Tomas Landelius

A limited-area kilometre scale numerical weather prediction system is applied to evaluate the effect of refined surface data assimilation on short-range heavy precipitation forecasts. The refinements include a spatially dependent background error representation, use of a flow-dependent data assimilation technique, and use of data from a satellite-based scatterometer instrument. The effect of the enhancements on short-term prediction of intense precipitation events is confirmed through a number of case studies. Verification scores and subjective evaluation of one particular case points at a clear impact of the enhanced surface data assimilation on short-range heavy precipitation forecasts and suggest that it also tends to slightly improve them. Although this is not strictly statistically demonstrated, it is consistent with the expectation that a better surface state should improve rainfall forecasts.


2020 ◽  
Vol 10 (16) ◽  
pp. 5493 ◽  
Author(s):  
Jingnan Wang ◽  
Lifeng Zhang ◽  
Jiping Guan ◽  
Mingyang Zhang

Satellite and radar observations represent two fundamentally different remote sensing observation types, providing independent information for numerical weather prediction (NWP). Because the individual impact on improving forecast has previously been examined, combining these two resources of data potentially enhances the performance of weather forecast. In this study, satellite radiance, radar radial velocity and reflectivity are simultaneously assimilated with the Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) assimilation method (referred to as POD-4DEnVar). The impact is evaluated on continuous severe rainfall processes occurred from June to July in 2016 and 2017. Results show that combined assimilation of satellite and radar data with POD-4DEnVar has the potential to improve weather forecast. Averaged over 22 forecasts, RMSEs indicate that though the forecast results are sensitive to different variables, generally the improvement is found in different pressure levels with assimilation. The precipitation skill scores are generally increased when assimilation is carried out. A case study is also examined to figure out the contributions to forecast improvement. Better intensity and distribution of precipitation forecast is found in the accumulated rainfall evolution with POD-4DEnVar assimilation. These improvements are attributed to the local changes in moisture, temperature and wind field. In addition, with radar data assimilation, the initial rainwater and cloud water conditions are changed directly. Both experiments can simulate the strong hydrometeor in the precipitation area, but assimilation spins up faster, strengthening the initial intensity of the heavy rainfall. Generally, the combined assimilation of satellite and radar data results in better rainfall forecast than without data assimilation.


2009 ◽  
Vol 13 (3) ◽  
pp. 293-303 ◽  
Author(s):  
Y. Xuan ◽  
I. D. Cluckie ◽  
Y. Wang

Abstract. Advances in mesoscale numerical weather predication make it possible to provide rainfall forecasts along with many other data fields at increasingly higher spatial resolutions. It is currently possible to incorporate high-resolution NWPs directly into flood forecasting systems in order to obtain an extended lead time. It is recognised, however, that direct application of rainfall outputs from the NWP model can contribute considerable uncertainty to the final river flow forecasts as the uncertainties inherent in the NWP are propagated into hydrological domains and can also be magnified by the scaling process. As the ensemble weather forecast has become operationally available, it is of particular interest to the hydrologist to investigate both the potential and implication of ensemble rainfall inputs to the hydrological modelling systems in terms of uncertainty propagation. In this paper, we employ a distributed hydrological model to analyse the performance of the ensemble flow forecasts based on the ensemble rainfall inputs from a short-range high-resolution mesoscale weather model. The results show that: (1) The hydrological model driven by QPF can produce forecasts comparable with those from a raingauge-driven one; (2) The ensemble hydrological forecast is able to disseminate abundant information with regard to the nature of the weather system and the confidence of the forecast itself; and (3) the uncertainties as well as systematic biases are sometimes significant and, as such, extra effort needs to be made to improve the quality of such a system.


2019 ◽  
Vol 146 (726) ◽  
pp. 401-414 ◽  
Author(s):  
Robert R. King ◽  
Daniel J. Lea ◽  
Matthew J. Martin ◽  
Isabelle Mirouze ◽  
Julian Heming

2016 ◽  
Vol 9 (8) ◽  
pp. 2833-2852 ◽  
Author(s):  
Nina M. Raoult ◽  
Tim E. Jupp ◽  
Peter M. Cox ◽  
Catherine M. Luke

Abstract. Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. The new improved parameters for JULES are presented along with the associated uncertainties for each parameter.


2019 ◽  
Vol 19 (2) ◽  
pp. 987-998 ◽  
Author(s):  
Angela Benedetti ◽  
Francesca Di Giuseppe ◽  
Luke Jones ◽  
Vincent-Henri Peuch ◽  
Samuel Rémy ◽  
...  

Abstract. Asian dust is a seasonal meteorological phenomenon which affects east Asia, and has severe consequences on the air quality of China, North and South Korea and Japan. Despite the continental extent, the prediction of severe episodes and the anticipation of their consequences is challenging. Three 1-year experiments were run to assess the skill of the model of the European Centre for Medium-Range Weather Forecasts (ECMWF) in monitoring Asian dust and understand its relative contribution to the aerosol load over China. Data used were the Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target and the Deep Blue aerosol optical depth (AOD). In particular the experiments aimed at understanding the added value of data assimilation runs over a model run without any aerosol data. The year 2013 was chosen as representative of the availability of independent AOD data from two established ground-based networks (AERONET, Aerosol Robotic Network, and CARSNET, China Aerosol Remote Sensing Network), which could be used to evaluate experiments. Particulate matter (PM) data from the China Environmental Protection Agency were also used in the evaluation. Results show that the assimilation of satellite AOD data is beneficial to predict the extent and magnitude of desert dust events and to improve the short-range forecast of such events. The availability of observations from the MODIS Deep Blue algorithm over bright surfaces is an asset, allowing for a better localization of the sources and definition of the dust events. In general both experiments constrained by data assimilation perform better than the unconstrained experiment, generally showing smaller normalized mean bias and fractional gross error with respect to the independent verification datasets. The impact of the assimilated satellite observations is larger at analysis time, but lasts into the forecast up to 48 h. The performance of the global model in terms of particulate matter does not show the same degree of skill as the performance in terms of optical depth. Despite this, the global model is able to capture some regional pollution patterns. This indicates that the global model analyses may be used as boundary conditions for regional air quality models at higher resolution, enhancing their performance in situations in which part of the pollution may have originated from large-scale mechanisms. While assimilation is not a substitute for model development and characterization of the emission sources, results indicate that it can play a role in delivering improved monitoring of Asian dust optical depth.


Sign in / Sign up

Export Citation Format

Share Document