Effects of temperature on parameters of root growth relevant to nutrient uptake: Measurements on oilseed rape and barley grown in flowing nutrient solution

1986 ◽  
Vol 94 (3) ◽  
pp. 321-332 ◽  
Author(s):  
J. H. Macduff ◽  
A. Wild ◽  
M. J. Hopper ◽  
M. S. Dhanoa
Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Mazhar H. Tunio ◽  
Jianmin Gao ◽  
Imran A. Lakhiar ◽  
Kashif A. Solangi ◽  
Waqar A. Qureshi ◽  
...  

The atomized nutrient solution droplet sizes and spraying intervals can impact the chemical properties of the nutrient solution, biomass yield, root-to-shoot ratio and nutrient uptake of aeroponically cultivated plants. In this study, four different nozzles having droplet sizes N1 = 11.24, N2 = 26.35, N3 = 17.38 and N4 = 4.89 µm were selected and misted at three nutrient solution spraying intervals of 30, 45 and 60 min, with a 5 min spraying time. The measured parameters were power of hydrogen (pH) and electrical conductivity (EC) values of the nutrient solution, shoot and root growth, ratio of roots to shoots (fresh and dry), biomass yield and nutrient uptake. The results indicated that the N1 presented significantly lower changes in chemical properties than those of N2, N3 and N4, resulting in stable lateral root growth and increased biomass yield. Also, the root-to-shoot ratio significantly increased with increasing spraying interval using N1 and N4 nozzles. The N1 nozzle also revealed a significant effect on the phosphorous, potassium and magnesium uptake by the plants misted at proposed nutrient solution spraying intervals. However, the ultrasonic nozzle showed a nonsignificant effect on all measured parameters with respect to spraying intervals. In the last, this research experiment validates the applicability of air-assisted nozzle (N1) misting at a 30-min spraying interval and 5 min of spraying time for the cultivation of butter-head lettuce in aeroponic systems.


HortScience ◽  
1990 ◽  
Vol 25 (3) ◽  
pp. 318-320
Author(s):  
J.L. Townshend

The effects of temperature and root-lesion nematodes [Pratylenchus penetrans (Cobb)] on the growth of newly germinated `Bartlett' pear seedlings (Pyrus communis L.) were examined. At five temperatures from 10 to 30C, P. penetrans (five per gram of soil) did not purple the leaves. After 8 weeks, leaf number, trunk height, and top and root weights were reduced only at 25C. The number of P. penetrans in the roots were greatest at 15 and 20C. At 20C, P. penetrans (16 per gram of soil) caused the leaves of seedlings to turn purple, and, by 6 weeks after treatment, the nematodes had reduced leaf production, trunk elongation, and top and root growth.


1975 ◽  
Vol 5 (2) ◽  
pp. 171-175 ◽  
Author(s):  
Hugh E. Wilcox ◽  
Ruth Ganmore-Neumann

Seedlings of Pinusresinosa were grown at root temperatures of 16, 21 and 27 °C, both aseptically and after inoculation with the ectendomycorrhizal fungus BDG-58. Growth after 3 months was significantly influenced by the presence of the fungus at all 3 temperatures. The influence of the fungus on root growth was obscured by the effects of root temperature on morphology. The root system at 16 and at 21 °C possessed many first-order laterals with numerous, well developed second-order branches, but those at 27 °C had only a few, relatively long, unbranched first-order laterals. Although the root systems of infected seedlings were larger, the fungus increased root growth in the same pattern as determined by the temperature.


2003 ◽  
Vol 34 (7-8) ◽  
pp. 1059-1075 ◽  
Author(s):  
Yunsheng Lou ◽  
Yongchao Liang ◽  
Yuai Yang ◽  
R. W. Bell

2004 ◽  
Vol 61 (3) ◽  
pp. 313-318 ◽  
Author(s):  
Carlos Eduardo de Oliveira Camargo ◽  
Antonio Wilson Penteado Ferreira Filho ◽  
Marcus Vinicius Salomon

Primary root growth is very important for wheat (Triticum aestivum L.) crop in upland conditions in the State of São Paulo. Fourteen wheat genotypes (mutant lines and cultivars) were evaluated for primary root growth during 7 and 15 days of development in complete and aerated nutrient solutions, in the laboratory. In the first experiment, solutions with three pH values (4.0, 5.0 and 6.0) at constant temperature (24 ± 1°C), and in the second experiment, solutions with the same pH (4.0) but with three temperatures (18°C ± 1°C, 24°C ± 1°C and 30°C ± 1°C) were used. High genetic variability was observed among the evaluated genotypes in relation to primary root growth in the first stages of development in nutrient solutions independent of pH, temperature and growth period. Genotypes 6 (BH-1146) and 13 (IAC-17), tolerant to Al3+ showed genetic potential for root growth in the first stages of development (7 and 15 days), regardless of nutrient solution temperature and pH. Genotypes 14 (IAC-24 M), 15 (IAC-24), 17 (MON"S" / ALD "S") ´ IAC-24 M2, 18 (MON"S" / ALD "S") ´ IAC-24 M3 and 24 (KAUZ"S" / IAC-24 M3), tolerant to Al3+, showed reduced root growth under the same conditions.


Sign in / Sign up

Export Citation Format

Share Document