Effects of Temperature on Root Morphology and Ectendomycorrhizal Development in Pinusresinosa Ait.

1975 ◽  
Vol 5 (2) ◽  
pp. 171-175 ◽  
Author(s):  
Hugh E. Wilcox ◽  
Ruth Ganmore-Neumann

Seedlings of Pinusresinosa were grown at root temperatures of 16, 21 and 27 °C, both aseptically and after inoculation with the ectendomycorrhizal fungus BDG-58. Growth after 3 months was significantly influenced by the presence of the fungus at all 3 temperatures. The influence of the fungus on root growth was obscured by the effects of root temperature on morphology. The root system at 16 and at 21 °C possessed many first-order laterals with numerous, well developed second-order branches, but those at 27 °C had only a few, relatively long, unbranched first-order laterals. Although the root systems of infected seedlings were larger, the fungus increased root growth in the same pattern as determined by the temperature.

2001 ◽  
Vol 52 (4) ◽  
pp. 495 ◽  
Author(s):  
V. Dunbabin ◽  
Z. Rengel ◽  
A. Diggle

Little is known about the ability of legume root systems to respond to the heterogeneous supply of nitrate. A split-root nutrient solution experiment was set up to compare the root growth response of 2 lupin species, Lupinus angustifolius L. (dominant tap root and primary lateral system) and L. pilosus Murr. (minor tap root and well-developed lateral root system), to differentially supplied nitrate. These 2 species represent the extremes of the root morphology types present across the lupin germplasm. Nutrient solution containing low (250 M) or high (750 M) nitrate was supplied either uniformly, or split (high and low) between the upper and lower root system. The average growth rate and total root length of L. pilosus was 1.7 times that of L. angustifolius. For both species, the increased proliferation of roots in a high nitrate zone was accompanied by a decrease in root growth in the low nitrate zone, giving approximately the same total growth as the uniform low nitrate treatment. This correlative growth rate response was 15% larger for the first-order branches of L. pilosus than L. angustifolius. While few second-order branches grew for L. angustifolius, the second-order laterals of L. pilosus showed a 2-fold correlative root growth and branching response to the split treatments, with no difference in growth between the uniform high and low nitrate treatments. The second-order laterals thus proliferated in response to the differential supply of nitrate and not the absolute concentration. While the growth rate and branching of the second-order laterals of L. pilosus exhibited a typical correlative response, first-order branching was inhibited in all split treatments, regardless of whether the roots were in the high or low nitrate zone. This response was not seen in L. angustifolius. The difference in the root growth response of the 2 root system types to differentially supplied nitrate suggests a potential in the lupin germplasm for developing a line capable of greater nitrate capture from the soil profile.


1998 ◽  
Vol 8 (4) ◽  
pp. 544-549 ◽  
Author(s):  
Silvana Nicola

Root architecture can be very important in plant productivity. The importance of studies on root morphology and development is discussed to improve seedling growth. Root systems of dicotyledonous species are reviewed, with emphasis on differences between growth of basal and lateral roots. The presence of different types of roots in plant species suggests possible differences in function as well. The architecture of a root system related to its functions is considered. Classical methods for studying root systems comprise excavation of root system, direct observation, and indirect analyses. While the first method is destructive and the third is effective in understanding root architecture only on a relatively gross scale, observation methods allow the scientist a complete a nondestructive architectural study of a root system. The three groups are reviewed related to their potential to give valuable information related to the root architecture and development of the seedling, with emphasis on the availability of a medium-transparent plant-growing system, enabling nondestructive daily observations and plant measurements under controlled environmental conditions. Effects of CO2 enrichment on seedling growth is reviewed, emphasizing the effects of CO2 on root growth.


2010 ◽  
Vol 36 (4) ◽  
pp. 149-159
Author(s):  
Susan Day ◽  
P. Eric Wiseman ◽  
Sarah Dickinson ◽  
J. Roger Harris

Knowledge of the extent and distribution of tree root systems is essential for managing trees in the built environment. Despite recent advances in root detection tools, published research on tree root architecture in urban settings has been limited and only partially synthesized. Root growth patterns of urban trees may differ considerably from similar species in forested or agricultural environments. This paper reviews literature documenting tree root growth in urban settings as well as literature addressing root architecture in nonurban settings that may contribute to present understanding of tree roots in built environments. Although tree species may have the genetic potential for generating deep root systems (>2 m), rooting depth in urban situations is frequently restricted by impenetrable or inhospitable soil layers or by underground infrastructure. Lateral root extent is likewise subject to restriction by dense soils under hardscape or by absence of irrigation in dry areas. By combining results of numerous studies, the authors of this paper estimated the radius of an unrestricted root system initially increases at a rate of approximately 38 to 1, compared to trunk diameter; however, this ratio likely considerably declines as trees mature. Roots are often irregularly distributed around the tree and may be influenced by cardinal direction, terrain, tree lean, or obstacles in the built environment. Buttress roots, tap roots, and other root types are also discussed.


2020 ◽  
Author(s):  
Rui Zhang ◽  
Yi Wang ◽  
Zhichun Zhou

Abstract Background: Both NH4+ and NO3– are capable of greatly influencing plants’ growth and biomass. However, the belowground responses of subtropical trees to either NH4+ or NO3– deposition remain poorly understood. Here, we discuss how these two forms of N deposition can affect root development, and experimentally analyzed how they could impact nitrogen and phosphorus absorption in two types (broadleaved with a fibrous root system vs. conifer with a tap root system) of subtropical tree species. Results: In a greenhouse in southern China, 1-year-old S. superba and P. massoniana seedlings grown on P-limited and P-normal soil were treated with NaNO3 and NH4Cl solutions of 0, 80, and 200 kg N ha–1 year–1, corresponding to the control, N80, and N200 groups, respectively. Root phenotype characteristics and metabolism ability were measured after 8 months of growth. The results showed that the root morphology and physiology variables differed significantly between the two species under different N and P treatments. Although S. superba had a larger quantity of roots than P. massoniana, both its root growth rate and root absorption were respectively lower and weaker. N addition differentially affected root growth and activity as follows: (1) NO3–-N80 and NH4+-N80 increased root growth and activity of the two species, but NH4+-N80 led to thicker roots in S. superba; (2) NO3–-N200 and NH4+-N200 had inhibitory effects on the roots of P. massoniana, for which NH4+-N200 led to thinner and longer roots and even the death of some roots; and (3) NH4+-N could promote metabolic activity in thicker roots (> 1.5 mm) and the NO3–-N was found to stimulate activity in thinner roots (0.5–1.5 mm) in the fibrous root system having a larger quantity of roots, namely S. superba. By contrast, NO3–-N and NH4+-N had an opposite influence upon functioning in the tap root system with a slender root, namely P. massoniana. Conclusion: We conclude P. massoniana has a much higher root absorption efficiency; however, nitrogen deposition is more beneficial to the root growth of S. superba.


1976 ◽  
Vol 27 (2) ◽  
pp. 183 ◽  
Author(s):  
D Tennant

Wheat root growth was followed to 30 days from planting in wheat supplied with standard, twofold, half and nil levels of nitrogen, phosphorus and potassium. Root numbers and lengths followed consistent patterns of increase in the seminal and nodal root systems of all treatments. Most root components demonstrated their highest rates of relative increase in length and number immediately after first appearance. Within a few days this decreased to a constant rate of increase which continued until the end of the experiment. Rates during the stages of constant relative increase were higher with increasing order of lateral, and the same for all treatments, except when nutrient deficiency seriously suppressed root growth. Potassium deficiency stopped root growth completely within 10–12 days of planting. Nitrogen and phosphorus deficiencies gave increasing delays in root component appearance with increasing order of lateral. Increasing suppression of seminal lateral numbers and a severe suppression of nodal root growth followed. Lower root numbers caused by nitrogen deficiency were compensated by greater lateral lengths in the seminal but not the nodal root systems. Some reduction in root growth resulted from application of the half and twofold levels of nitrogen, phosphorus and potassium. All responses to applied nutrient levels were more obvious with increasing order of lateral and with the nodal rather than seminal root systems. The nodal root system reflected plant response better than the seminal root system.


1967 ◽  
Vol 47 (3) ◽  
pp. 163-174 ◽  
Author(s):  
D. S. Stevenson

Root and top growth of clover, wheat, and sunflowers varied consistently and quantitatively with changing soil volumes.A definition for effective soil volume is given and discussed in terms of root growth and root densities. The postulate is made that in root systems above a certain density each individual root can interfere with the daily water supply of nearby roots and hence restrict the growth of the whole root system and plant. The theoretical geometric proportions of this interference are discussed. The importance of soil volume in experimental work is indicated.


1988 ◽  
Vol 18 (11) ◽  
pp. 1376-1385 ◽  
Author(s):  
William C. Carlson ◽  
Constance A. Harrington ◽  
Peter Farnum ◽  
Stephen W. Hallgren

Six-year-old loblolly pine seedlings were subjected to root severing treatments varying from 0 to 100% of first-order lateral roots. Separate treatments severed surface-oriented or deep-oriented roots. Plant water status was monitored periodically for several months. After all measurements were taken, gross root system structure was determined by excavation. Treatment responses were evident on all dates of measurement. Relationships between percentage of root system cut and leaf conductance or water potential were stronger when surface-oriented roots were cut than when deep-oriented roots were cut. Severing surface-oriented first-order lateral (SOFOL) roots probably resulted in greater impact on plant water status than severing deep-oriented first-order lateral (DOFOL) roots because (i) SOFOL roots had both surface-oriented and deep-oriented second-order lateral roots that could tap both surface and subsurface soil horizons for soil moisture, and (ii) the deep-oriented second-order roots (originating from the SOFOL roots) were spatially distributed over a much larger area than the DOFOL roots and thus would have access to soil water in a larger volume of soil. For SOFOL roots the relationship between percentage cut and leaf conductance or transpiration was strongly negative; for DOFOL roots, no relationship between these variables was observed. Initially water potential decreased with the percentage of roots cut in both groups; in later measurements, water potential was affected more by severing SOFOL than DOFOL roots. Calculation of soil moisture depletion by depth indicated that both surface- and deep-oriented second-order lateral roots were important for water uptake. Severing SOFOL roots significantly decreased nitrogen, phosphorus, and potassium levels in needles of the first growth flush of the year. Levels of these elements in terminal buds were not affected by severing SOFOL roots, but were significantly reduced by severing DOFOL roots. Secondary xylem production was reduced proportionately to the amount of root system cross-sectional area severed.


2021 ◽  
Author(s):  
Justin Miron

Understanding the architecture of tree roots is an important component of urban forestry management practice. Tree roots are structurally and functionally important to the survival of trees, and this can be even more so in urban environments where underground space for roots is limited. Tree root architecture models can provide a complementary approach to traditional on-site field investigation methods. Root architecture models are unique in that they can simulate the spatial arrangements of root system structure explicitly, and allow investigators to create hypothetical simulations to test their assumptions about what may be driving root growth. The use of root architecture models in the literature is extensive and may be applied in diverse streams of investigation, but their application to tree root systems is less common. This research demonstrates a root architecture model, Rootbox, as a case study in the application of plant architecture models to simulate tree root growth in urban conditions. Model parameterization was based on conformity of root simulations to tree root architecture reported in the literature. The model is deployed in four hypothetical urban soil scenarios, which are representative of planting sites commonly observed in urban settings. The analysis demonstrates that plausible tree root system architectures – specifically, commonly observed growth attributes - can be produced by Rootbox, but only after several adaptive changes to both the source code/model design are made. Custom soil models can integrate with the simulation to represent urban conditions by modifying both the growth direction and elongation of portions of the root architecture, and thus offer greater control over the output architecture. Rootbox offers a flexible method of simulating the architecture of tree root systems, but further research should focus on optimizing the model’s parameters and functions to enable greater user control over model output.


2019 ◽  
Author(s):  
M. Rosario Ramírez-Flores ◽  
Elohim Bello-Bello ◽  
Rubén Rellán-Álvarez ◽  
Ruairidh J. H. Sawers ◽  
Víctor Olalde-Portugal

ABSTRACTPlant root systems play an essential role in nutrient and water acquisition. In resource-limited soils, modification of root system architecture is an important strategy to optimize plant performance. Most terrestrial plants also form symbiotic associations with arbuscular mycorrhizal fungi to maximize nutrient uptake. In addition to direct delivery of nutrients, arbuscular mycorrhizal fungi benefit the plant host by promoting root growth. Here, we aimed to quantify the impact of arbuscular mycorrhizal symbiosis on root growth and nutrient uptake in maize. Inoculated plants showed an increase in both biomass and the total content of twenty quantified elements. In addition, image analysis showed mycorrhizal plants to have denser, more branched root systems. For most of the quantified elements, the increase in content in mycorrhizal plants was proportional to root and overall plant growth. However, the increase in boron, calcium, magnesium, phosphorus, sulfur and strontium was greater than predicted by root system size alone, indicating fungal delivery to be supplementing root uptake.


2021 ◽  
Author(s):  
Justin Miron

Understanding the architecture of tree roots is an important component of urban forestry management practice. Tree roots are structurally and functionally important to the survival of trees, and this can be even more so in urban environments where underground space for roots is limited. Tree root architecture models can provide a complementary approach to traditional on-site field investigation methods. Root architecture models are unique in that they can simulate the spatial arrangements of root system structure explicitly, and allow investigators to create hypothetical simulations to test their assumptions about what may be driving root growth. The use of root architecture models in the literature is extensive and may be applied in diverse streams of investigation, but their application to tree root systems is less common. This research demonstrates a root architecture model, Rootbox, as a case study in the application of plant architecture models to simulate tree root growth in urban conditions. Model parameterization was based on conformity of root simulations to tree root architecture reported in the literature. The model is deployed in four hypothetical urban soil scenarios, which are representative of planting sites commonly observed in urban settings. The analysis demonstrates that plausible tree root system architectures – specifically, commonly observed growth attributes - can be produced by Rootbox, but only after several adaptive changes to both the source code/model design are made. Custom soil models can integrate with the simulation to represent urban conditions by modifying both the growth direction and elongation of portions of the root architecture, and thus offer greater control over the output architecture. Rootbox offers a flexible method of simulating the architecture of tree root systems, but further research should focus on optimizing the model’s parameters and functions to enable greater user control over model output.


Sign in / Sign up

Export Citation Format

Share Document