Oxide morphology and adhesive bonding on titanium surfaces

1984 ◽  
Vol 19 (11) ◽  
pp. 3626-3639 ◽  
Author(s):  
M. Assefpour-Dezfuly ◽  
C. Vlachos ◽  
E. H. Andrews
2013 ◽  
Vol 21 (6) ◽  
pp. 590-596 ◽  
Author(s):  
Hercules Jorge ALMILHATTI ◽  
Karin Hermana NEPPELENBROEK ◽  
Carlos Eduardo VERGANI ◽  
Ana Lucia MACHADO ◽  
Ana Claudia PAVARINA ◽  
...  

Author(s):  
S.V. Babin ◽  
E.N. Egorov ◽  
A.A. Fursov

Capillary-porous surfaces are used in endoprosthetics as well as in catalytic converters and heat exchangers to increase the strength of adhesive bonding. Plasma spraying is one of the methods to obtain rough coatings for capillary-porous surfaces. Determining the relationships between the parameters of macrostructure of capillary-porous surfaces and the technological factors of the plasma spraying process enables one to control the surface characteristics. It is an important and fundamental element in the formation of the required properties of the surface. However, studies on the influence of technological parameters of plasma spraying on the construction and macrostructure of plasma-sprayed titanium surfaces are insufficient in scientific literature. This paper presents a study on the influence of roughness, curvature and the material of the supporting plate surface, as well as distance and angle of spraying on the structure of a VT1-0 titanium capillary porous coating applied to a VT6 titanium alloy supporting plate. A regression analysis of the experiment results is performed. It is shown that all the parameters have a significant influence on the surface structure. The experimentally obtained relationships make it possible to produce surfaces with required macrostructure parameters. They help to evaluate the possibility of obtaining titanium surfaces of this kind and thoroughly select parameters of the plasma spraying process in order to obtain surfaces with the required properties.


Author(s):  
Julie A. Martini ◽  
Robert H. Doremus

Tracy and Doremus have demonstrated chemical bonding between bone and hydroxylapatite with transmission electron microscopy. Now researchers ponder how to improve upon this bond in turn improving the life expectancy and biocompatibility of implantable orthopedic devices.This report focuses on a study of the- chemical influences on the interfacial integrity and strength. Pure hydroxylapatite (HAP), magnesium doped HAP, strontium doped HAP, bioglass and medical grade titanium cylinders were implanted into the tibial cortices of New Zealand white rabbits. After 12 weeks, the implants were retrieved for a scanning electron microscopy study coupled with energy dispersive spectroscopy.Following sacrifice and careful retrieval, the samples were dehydrated through a graduated series starting with 50% ethanol and continuing through 60, 70, 80, 90, 95, and 100% ethanol over a period of two days. The samples were embedded in LR White. Again a graduated series was used with solutions of 50, 75 and 100% LR White diluted in ethanol.


Author(s):  
J. E. Laffoon ◽  
R. L. Anderson ◽  
J. C. Keller ◽  
C. D. Wu-Yuan

Titanium (Ti) dental implants have been used widely for many years. Long term implant failures are related, in part, to the development of peri-implantitis frequently associated with bacteria. Bacterial adherence and colonization have been considered a key factor in the pathogenesis of many biomaterial based infections. Without the initial attachment of oral bacteria to Ti-implant surfaces, subsequent polymicrobial accumulation and colonization leading to peri-implant disease cannot occur. The overall goal of this study is to examine the implant-oral bacterial interfaces and gain a greater understanding of their attachment characteristics and mechanisms. Since the detailed cell surface ultrastructure involved in attachment is only discernible at the electron microscopy level, the study is complicated by the technical problem of obtaining titanium implant and attached bacterial cells in the same ultra-thin sections. In this study, a technique was developed to facilitate the study of Ti implant-bacteria interface.Discs of polymerized Spurr’s resin (12 mm x 5 mm) were formed to a thickness of approximately 3 mm using an EM block holder (Fig. 1). Titanium was then deposited by vacuum deposition to a film thickness of 300Å (Fig. 2).


2000 ◽  
Vol 27 (12) ◽  
pp. 1054-1059 ◽  
Author(s):  
H. Matsumura ◽  
N. Tanoue ◽  
M. Atsuta

2012 ◽  
pp. 141208072802005
Author(s):  
Fabiano Ribeiro Cirano ◽  
ADRIANE TOGASHI ◽  
MARCIA MARQUES ◽  
FRANCISCO PUSTIGLIONI ◽  
LUIZ LIMA

Authorea ◽  
2020 ◽  
Author(s):  
Ricardo Maciel ◽  
Tiago Bento ◽  
Daniel F O Braga ◽  
Lucas da Silva ◽  
Pedro Moreira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document