A traceable dynamic force transducer

1990 ◽  
Vol 30 (2) ◽  
pp. 152-157 ◽  
Author(s):  
Michael J. Dixon
2019 ◽  
Vol 888 ◽  
pp. 72-77
Author(s):  
Akihiro Takita ◽  
Taku Iwashita ◽  
Yusaku Fujii

Dynamic-error caused by the mass attached to the sensing part of a force transducer is experimentally investigated using the Levitation Mass Method (LMM), in which the dynamic-force applied to the force transducer is measured based on the definition of force, i.e. the product of mass and acceleration. It is experimentally proved that the change in the dynamic correction coefficient (DCC) is proportional to the additional mass as expected by the theory. The effective mass and the effective spring constant of the transducer with the additional mass are estimated from the experimental result. It is experimentally proved that the DCC for the transducer with the additional mass can be calculated using the estimated properties, i.e. the effective mass and the effective spring constant, and the dynamic-error can be corrected with the calculated DCC.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 48998-49003 ◽  
Author(s):  
Yelong Zheng ◽  
Meirong Zhao ◽  
Jile Jiang ◽  
Le Song

2013 ◽  
Vol 765-767 ◽  
pp. 2329-2332 ◽  
Author(s):  
Wei Dong Xie ◽  
Hao Liang Lv ◽  
Ji Sheng Shen

The force transducer for dynamic calibration in absorber dynamometer is usually statically calibrated. To solve the problem, a new kind of dynamic calibration device and its working principle is discussed. Furthermore , the principle of its core member, linear damper, is particularly analyzed. Moreover dampers in different structures are discussed in depth and the production of its damping force is deduced. Thus, the theoretical premise of dynamic calibration device and linear damper is provided in this essay.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 118
Author(s):  
M. Kobusch ◽  
L. Klaus

This paper presents experimental investigations of in-situ dynamic force calibrations in which an impact hammer provides the dynamic reference force. Here, the force transducer to be calibrated remains in the original mechanical structure of the force measurement application to which calibration shock forces are applied in a suitable way. Numerous experiments with different force transducer set-ups and different impact hammer configurations were conducted to validate this in- situ calibration method. The paper describes the analysis of the measurement data and presents the force transfer functions obtained. Finally, these dynamic calibration results are discussed.


Author(s):  
A. Sadek ◽  
M. Meshreki ◽  
M. H. Attia

In vibration assisted drilling (VAD), a controlled harmonic motion is superimposed over the principal drilling feed motion in order to create an intermittent cutting state, which reduces cutting forces and temperatures, facilitates chip removal, and increases the possibility for dry machining. However, accurate force measurements during VAD operations has been a challenge especially in systems, where the force transducer is part of the vibrating mass mounted on the shaker head, due to the dynamic force errors. Conventional signal filtering and compensation techniques were found to be not applicable for attenuating undesirable VAD dynamic force components, which exist in the measured force signals at the same frequency of superimposed modulation. This research work presents a corrective dynamic model that rectifies the erroneous VAD tangential and axial force signals measured by a commercial piezoelectric dynamometer mounted on electro-magnetic shakers for the low frequency/high amplitude (LF/HA) regime. An experimental modal analysis in tangential and axial directions was conducted in order to define the transfer function of a multiple degrees of freedom VAD system mounted on a vibrating base (shaker). The rectified force is then obtained by plugging the relative motion between the dynamometer base and face measured during cutting into the system transfer function. The predicted rectified force components showed very high conformance with known impact and sinusoidal excitation forces used for validation. Moreover, the developed corrective model was capable of predicting some features in the VAD force signals that were not fully captured in the measured force signals during cutting.


Author(s):  
Nicholas Vlajic ◽  
Ako Chijioke

National Measurement Institutions have developed apparatuses that rely on impacting bodies to realize time-varying forces for dynamic calibration of force transducers. Within this manuscript, we present a reduced-order model to investigate the effects of structural and contact parameters on determining the frequency-dependent calibration function of the force transducer that is to be calibrated. The reduced-order model is validated with experimental measurements and is used to conduct parametric studies, wherein regions of single impact events and contact time are mapped out in parameter space. Although this study has been conducted with dynamic force calibrations in mind, the results presented here are of broader relevance to modal analysis and system identification.


2020 ◽  
pp. 1-11
Author(s):  
Jianlei Wu ◽  
Yunfeng Liu ◽  
Dongcai Wang ◽  
Senda Huang ◽  
Jianxing Zhang ◽  
...  

BACKGROUND: Orthodontic force is often statically measured in general, and only the initial force derived from appliances can be assessed. OBJECTIVE: We aimed to investigate a technological method for measuring dynamic force using tooth movement simulation. METHODS: Tooth movement was simulated in a softened wax model. A canine tooth was selected for evaluation and divided into the crown and root. A force transducer was plugged in and fixed between the two parts for measuring force. Forces on this tooth were derived by ordinary nickel-titanium (Ni-Ti) wire, hyperelastic Ni-Ti wire, low-hysteresis (LH) Ti-Ni wire and self-made glass fibre-reinforced shape memory polyurethane (GFRSMPU) wire. These forces were measured after the tooth movement. RESULTS: The canine tooth moved to the desired location, and only a 0.2 mm deviation remained. The changing trends and magnitudes of forces produced by the wires were consistent with the data reported by other studies. The tooth had a higher moving velocity with ordinary Ni-Ti wires in comparison to the other wires. Force attenuation for the GFRSMPU wire was the lowest (40.17%) at the end of the test, indicating that it provided light but continuous force. CONCLUSIONS: Mimicked tooth movements and dynamic force measurements were successfully determined in tooth movement simulation. These findings could help with estimating treatment effects and optimising the treatment plan.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1365-1372
Author(s):  
Xiaohui Mao ◽  
Liping Fei ◽  
Xianping Shang ◽  
Jie Chen ◽  
Zhihao Zhao

The measurement performance of road vehicle automatic weighing instrument installed on highways is directly related to the safety of roads and bridges. The fuzzy number indicates that the uncertain quantization problem has obvious advantages. By analyzing the factors affecting the metrological performance of the road vehicle automatic weighing instrument, combined with the fuzzy mathematics theory, the weight evaluation model of the dynamic performance evaluation of the road vehicle automatic weighing instrument is proposed. The factors of measurement performance are summarized and calculated, and the comprehensive evaluation standard of the metering performance of the weighing equipment is obtained, so as to realize the quantifiable analysis and evaluation of the metering performance of the dynamic road vehicle automatic weighing instrument in use, and provide data reference for adopting a more scientific measurement supervision method.


Sign in / Sign up

Export Citation Format

Share Document