Contributions to the mathematical theory of the stability of metabolizing systems with variable surface tension

1946 ◽  
Vol 8 (4) ◽  
pp. 135-145 ◽  
Author(s):  
Alfonso Shimbel
2021 ◽  
Vol 9 ◽  
Author(s):  
Yongcai Pan ◽  
Bing He ◽  
Binghai Wen

The existence of surface nanobubbles has already been confirmed by variable detection methods, but the mechanism of their extraordinary stability remains unclear and has aroused widespread research interest in the past 2 decades. Experiments and theoretical analyses have tried to account for these stabilities such as the very long lifetime, very high pressure and very small contact angle. Attractive hydrophobic potential was applied to complement the pinning-oversaturation theory and successfully explain the survival of surface nanobubbles in undersaturation environment by some researchers. However, the survival of nanobubbles on hydrophilic surface still requires sizeable oversaturation. In this paper, we introduce the variable surface tensions, namely Tolman-dependence and state-dependence, and show that they effectively promote the stability of nanobubbles. The decrease in surface tension can lead to larger contact angle and even make the nanobubbles survivable on the highly hydrophilic surface. In Tolman-dependence, the changing rate in the contact angle evolution slows down, which is more obvious when the bubble size is close to the Tolman length. The contact angle is also getting larger in the state-dependence, and the increase of the gas saturation degree is beneficial to the stability of surface nanobubbles. With the gas saturation ratio of 3, the bubbles on the quite hydrophilic surface can also be stable, while grow up on the hydrophobic surface. The variable surface tensions weaken the need of saturation degree for the surface nanobubbles’ stability.


2010 ◽  
Vol 665 ◽  
pp. 418-456 ◽  
Author(s):  
S. J. D. D'ALESSIO ◽  
J. P. PASCAL ◽  
H. A. JASMINE ◽  
K. A. OGDEN

The two-dimensional problem of gravity-driven laminar flow of a thin layer of fluid down a heated wavy inclined surface is discussed. The coupled effect of bottom topography, variable surface tension and heating has been investigated both analytically and numerically. A stability analysis is conducted while nonlinear simulations are used to validate the stability predictions and also to study thermocapillary effects. The governing equations are based on the Navier–Stokes equations for a thin fluid layer with the cross-stream dependence eliminated by means of a weighted residual technique. Comparisons with experimental data and direct numerical simulations have been carried out and the agreement is good. New interesting results regarding the combined role of surface tension and sinusoidal topography on the stability of the flow are presented. The influence of heating and the Marangoni effect are also deduced.


2021 ◽  
Vol 5 (3) ◽  
pp. 37
Author(s):  
Hernán Martinelli ◽  
Claudia Domínguez ◽  
Marcos Fernández Leyes ◽  
Sergio Moya ◽  
Hernán Ritacco

In the search for responsive complexes with potential applications in the formulation of smart dispersed systems such as foams, we hypothesized that a pH-responsive system could be formulated with polyacrylic acid (PAA) mixed with a cationic surfactant, Gemini 12-2-12 (G12). We studied PAA-G12 complexes at liquid–air interfaces by equilibrium and dynamic surface tension, surface rheology, and X-ray reflectometry (XRR). We found that complexes adsorb at the interfaces synergistically, lowering the equilibrium surface tension at surfactant concentrations well below the critical micelle concentration (cmc) of the surfactant. We studied the stability of foams formulated with the complexes as a function of pH. The foams respond reversibly to pH changes: at pH 3.5, they are very stable; at pH > 6, the complexes do not form foams at all. The data presented here demonstrate that foam formation and its pH responsiveness are due to interfacial dynamics.


2002 ◽  
Vol 452 ◽  
pp. 163-187 ◽  
Author(s):  
C. L. BURCHAM ◽  
D. A. SAVILLE

A liquid bridge is a column of liquid, pinned at each end. Here we analyse the stability of a bridge pinned between planar electrodes held at different potentials and surrounded by a non-conducting, dielectric gas. In the absence of electric fields, surface tension destabilizes bridges with aspect ratios (length/diameter) greater than π. Here we describe how electrical forces counteract surface tension, using a linearized model. When the liquid is treated as an Ohmic conductor, the specific conductivity level is irrelevant and only the dielectric properties of the bridge and the surrounding gas are involved. Fourier series and a biharmonic, biorthogonal set of Papkovich–Fadle functions are used to formulate an eigenvalue problem. Numerical solutions disclose that the most unstable axisymmetric deformation is antisymmetric with respect to the bridge’s midplane. It is shown that whilst a bridge whose length exceeds its circumference may be unstable, a sufficiently strong axial field provides stability if the dielectric constant of the bridge exceeds that of the surrounding fluid. Conversely, a field destabilizes a bridge whose dielectric constant is lower than that of its surroundings, even when its aspect ratio is less than π. Bridge behaviour is sensitive to the presence of conduction along the surface and much higher fields are required for stability when surface transport is present. The theoretical results are compared with experimental work (Burcham & Saville 2000) that demonstrated how a field stabilizes an otherwise unstable configuration. According to the experiments, the bridge undergoes two asymmetric transitions (cylinder-to-amphora and pinch-off) as the field is reduced. Agreement between theory and experiment for the field strength at the pinch-off transition is excellent, but less so for the change from cylinder to amphora. Using surface conductivity as an adjustable parameter brings theory and experiment into agreement.


2005 ◽  
Vol 19 (28n29) ◽  
pp. 1547-1550
Author(s):  
YOULIANG CHENG ◽  
XIN LI ◽  
ZHONGYAO FAN ◽  
BOFEN YING

Representing surface tension by nonlinear relationship on temperature, the boundary value problem of linear stability differential equation on small perturbation is derived. Under the condition of the isothermal wall the effects of nonlinear surface tension on stability of heat transfer in saturated liquid film of different liquid low boiling point gases are investigated as wall temperature is varied.


2021 ◽  
Vol 17 (9) ◽  
pp. e1008964
Author(s):  
Magali Tournus ◽  
Miguel Escobedo ◽  
Wei-Feng Xue ◽  
Marie Doumic

The dynamics by which polymeric protein filaments divide in the presence of negligible growth, for example due to the depletion of free monomeric precursors, can be described by the universal mathematical equations of ‘pure fragmentation’. The rates of fragmentation reactions reflect the stability of the protein filaments towards breakage, which is of importance in biology and biomedicine for instance in governing the creation of amyloid seeds and the propagation of prions. Here, we devised from mathematical theory inversion formulae to recover the division rates and division kernel information from time dependent experimental measurements of filament size distribution. The numerical approach to systematically analyze the behaviour of pure fragmentation trajectories was also developed. We illustrate how these formulae can be used, provide some insights on their robustness, and show how they inform the design of experiments to measure fibril fragmentation dynamics. These advances are made possible by our central theoretical result on how the length distribution profile of the solution to the pure fragmentation equation aligns with a steady distribution profile for large times.


2008 ◽  
Vol 12 (3) ◽  
pp. 103-110 ◽  
Author(s):  
Aiyub Khan ◽  
Neha Sharma ◽  
P.K. Bhatia

The Kelvin-Helmholtz discontinuity in two superposed viscous conducting fluids has been investigated in the taking account of effects of surface tension, when the whole system is immersed in a uniform horizontal magnetic field. The streaming motion is assumed to be two-dimensional. The stability analysis has been carried out for two highly viscous fluid of uniform densities. The dispersion relation has been derived and solved numerically. It is found that the effect of viscosity, porosity and surface tension have stabilizing influence on the growth rate of the unstable mode, while streaming velocity has a destabilizing influence on the system.


Sign in / Sign up

Export Citation Format

Share Document