Dietary lipid, fatty acid synthesis and cholesterol metabolism in aging rats

Lipids ◽  
1972 ◽  
Vol 7 (9) ◽  
pp. 576-589 ◽  
Author(s):  
Jacqueline Dupont ◽  
Melvin M. Mathias ◽  
Nenita B. Cabacungan
2000 ◽  
Vol 80 (1) ◽  
pp. 59-67 ◽  
Author(s):  
J. A. Moibi ◽  
R. J. Christopherson ◽  
E. K. Okine

Twenty-four wether lambs were randomly allocated to six treatments to investigate the effect of temperature and dietary lipid supplements on fatty acid synthesis and metabolic activity in sheep. The treatments consisted of four groups exposed to either cold (0 °C) or warm temperature (+23 °C) and given ad libitum access to either a control barley-based diet or with lipid supplementation. Two other groups were placed on the dietary regimen at 0 °C, but pair-fed to intake of animals in the +23 °C environment. At 5 wk, fatty acid synthesis was measured by [1-14C]acetate incorporation into tissue lipids. Cold exposure and dietary lipid supplementation had no effect (P > 0.05) on in vivo fatty acid synthesis rates in either longissimus dorsi or the liver. In both subcutaneous and mesenteric adipose tissue depots, the rate of acetate incorporation into tissue lipid was not significantly affected by cold exposure. In the perirenal fat depot, cold exposure increased (P < 0.05) the rate of fatty acid synthesis, while lipid supplementation decreased (P < 0.05) the rate in all tissue adipose depots. In vitro, mesenteric and perirenal adipose tissues from cold pair-fed animals had higher (P < 0.05) rates of fatty acid synthesis compared to tissues from animals in the warm environment. However, there was no effect of dietary lipid supplementation in these two fat depots. Metabolic heat production, and energy and nitrogen excretion by animals were increased (P < 0.05) by cold exposure while lipid supplementation had the opposite effect (P < 0.05). The relationship between average daily gain and feed intake was linear at both warm and cold environments, but with higher (P < 0.05) average daily gain at all levels of intake in the cold compared to the warm environment. Results indicate that both environment and diet regulate metabolic activity in sheep. However, there were differences in lipogenic response by tissues to the treatments. Key words: Environmental temperature, dietary lipid, fatty acid synthesis, metabolic rate, sheep


Author(s):  
Andrea Antonosante ◽  
Michele d'Angelo ◽  
Vanessa Castelli ◽  
Mariano Catanesi ◽  
Dalila Iannotta ◽  
...  

Energy homeostasis is crucial for cell fate since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, metabolic and energetic modulation has been reported in cancer cells long time ago, but have been neglected for a long time. Instead, during the past 20 years a recovery of the study of cancer metabolism has led to better consider metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet the energetic and biosynthetic demands that accompany rapid growth of the primary tumor and colonization of distinct metastatic sites. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilization. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to deregulation in glucose metabolism, fatty acid synthesis, and glutamine utilization. Cancer cells exhibit a series of metabolic alterations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we review the roles of PPARs transcription factors, master regulators of cellular energetic metabolism, in the control and deregulation of energetic homeostasis observed in cancer. We highlight the different contribution of the different PPAR isotypes in different cancers and the differential control of their transcription in the different cancer cells.


AGE ◽  
1978 ◽  
Vol 1 (3) ◽  
pp. 93-99 ◽  
Author(s):  
Jacqueline Dupont ◽  
Audrey A. Spindler ◽  
Melvin M. Mathias

2008 ◽  
Vol 99 (5) ◽  
pp. 952-962 ◽  
Author(s):  
Anja Bettzieche ◽  
Corinna Brandsch ◽  
Kristin Weiße ◽  
Frank Hirche ◽  
Klaus Eder ◽  
...  

To assess the effect of lupin protein on concentrations of lipids in plasma lipoproteins and liver and hepatic mRNA concentrations of genes involved in lipid metabolism, adult rats were fed egg albumin-based diets containing either lupin protein fromLupinus albusor casein (50 g/kg) supplemented (hypercholesterolaemic) or not (normolipaemic) with a cholesterol–cholate mixture for 20 d. Lupin protein compared with casein lowered the concentrations of TAG in liver (P < 0·01) and circulating VLDL + chylomicrons (P < 0·05) of hypercholesterolaemic rats, but not of normolipaemic rats. Hepatic mRNA concentrations of genes involved in fatty acid synthesis such as sterol regulatory element-binding protein-1c, glucose-6-phosphate dehydrogenase, fatty acid synthase, stearoyl-CoA desaturase-1 and acyl-CoA:glycerol-3-phosphate acyltransferase were lower and mRNA concentrations of lipoprotein lipase, hepatic lipase and apoA5 involved in TAG hydrolysis were higher in rats fed lupin protein than in rats fed casein. These effects were stronger in hypercholesterolaemic rats than in normolipaemic rats. Hypercholesterolaemic rats fed the lupin protein had higher liver cholesterol concentrations (P < 0·01) and lower levels of LDL-cholesterol (P < 0·05) than rats fed casein. No effect of lupin protein was observed on cholesterol concentration in VLDL + chylomicrons and HDL and hepatic mRNA concentrations of genes involved in cholesterol and bile acid metabolism. In conclusion, the present study shows that lupin protein has hypotriacylglycerolaemic action possibly via down regulation of fatty acid synthesis genes and up regulation of genes involved in TAG hydrolysis. Alterations in cholesterol metabolism could not be explained on the basis of mRNA data.


2009 ◽  
Vol 35 (10) ◽  
pp. 1942-1947
Author(s):  
Wan-Kun SONG ◽  
Ming-Xi ZHU ◽  
Yang-Lin ZHAO ◽  
Jing WANG ◽  
Wen-Fu LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document