scholarly journals The Involvement of PPARs in the Peculiar Energetic Metabolism of Tumor Cells

Author(s):  
Andrea Antonosante ◽  
Michele d'Angelo ◽  
Vanessa Castelli ◽  
Mariano Catanesi ◽  
Dalila Iannotta ◽  
...  

Energy homeostasis is crucial for cell fate since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, metabolic and energetic modulation has been reported in cancer cells long time ago, but have been neglected for a long time. Instead, during the past 20 years a recovery of the study of cancer metabolism has led to better consider metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet the energetic and biosynthetic demands that accompany rapid growth of the primary tumor and colonization of distinct metastatic sites. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilization. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to deregulation in glucose metabolism, fatty acid synthesis, and glutamine utilization. Cancer cells exhibit a series of metabolic alterations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we review the roles of PPARs transcription factors, master regulators of cellular energetic metabolism, in the control and deregulation of energetic homeostasis observed in cancer. We highlight the different contribution of the different PPAR isotypes in different cancers and the differential control of their transcription in the different cancer cells.

2020 ◽  
Author(s):  
Alejandro Schcolnik‑Cabrera ◽  
Guadalupe Dominguez‑G�mez ◽  
Alma Ch�vez‑Blanco ◽  
Marisol Ram�rez‑Yautentzi ◽  
Roc�o Morales‑B�rcenas ◽  
...  

2010 ◽  
Vol 391 (12) ◽  
Author(s):  
Amit Joshi ◽  
Sandeep Rajput ◽  
Chun Wang ◽  
Jun Ma ◽  
Deliang Cao

AbstractAldo-keto reductase family 1 member B10 (AKR1B10), over-expressed in multiple human cancers, might be implicated in cancer development and progression via detoxifying cytotoxic carbonyls and regulating fatty acid synthesis. In the present study, we investigated the ortholog of AKR1B10 in mice, an ideal modeling organism greatly contributing to human disease investigations. In the mouse, there are three aldo-keto reductase family 1 subfamily B (AKR1B) members, i.e., AKR1B3, AKR1B7, and AKR1B8. Among them, AKR1B8 has the highest similarity to human AKR1B10 in terms of amino acid sequence, computer-modeled structures, substrate spectra and specificity, and tissue distribution. More importantly, similar to human AKR1B10, mouse AKR1B8 associates with murine acetyl-CoA carboxylase-α and mediates fatty acid synthesis in colon cancer cells. Taken together, our data suggest that murine AKR1B8 is the ortholog of human AKR1B10.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Huakan Zhao ◽  
Yongsheng Li

AbstractMetabolic reprogramming with heterogeneity is a hallmark of cancer and is at the basis of malignant behaviors. It supports the proliferation and metastasis of tumor cells according to the low nutrition and hypoxic microenvironment. Tumor cells frantically grab energy sources (such as glucose, fatty acids, and glutamine) from different pathways to produce a variety of biomass to meet their material needs via enhanced synthetic pathways, including aerobic glycolysis, glutaminolysis, fatty acid synthesis (FAS), and pentose phosphate pathway (PPP). To survive from stress conditions (e.g., metastasis, irradiation, or chemotherapy), tumor cells have to reprogram their metabolism from biomass production towards the generation of abundant adenosine triphosphate (ATP) and antioxidants. In addition, cancer cells remodel the microenvironment through metabolites, promoting an immunosuppressive microenvironment. Herein, we discuss how the metabolism is reprogrammed in cancer cells and how the tumor microenvironment is educated via the metabolic products. We also highlight potential metabolic targets for cancer therapies.


2008 ◽  
Vol 14 (18) ◽  
pp. 5735-5742 ◽  
Author(s):  
Yanai Zhan ◽  
Nicole Ginanni ◽  
Michael R. Tota ◽  
Margaret Wu ◽  
Nathan W. Bays ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document