triacylglycerol hydrolysis
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 2)

H-INDEX

19
(FIVE YEARS 1)

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 963
Author(s):  
Sangeun Jeon ◽  
Jisub Hwang ◽  
Wanki Yoo ◽  
Hackwon Do ◽  
Han-Woo Kim ◽  
...  

Hormone sensitive lipase is a central enzyme in triacylglycerol hydrolysis, lipid modification, and transformation of various lipids. Microbial hormone-sensitive lipases, which are highly similar to a catalytic domain of mammalian equivalents, have attracted strong attention due to their application potentials. Here, characterization and a preliminary X-ray crystallographic analysis of a novel bacterial homologue of hormone-sensitive lipase (HaLip1) from Halocynthiibacter arcticus is reported. Sequence analysis shows that HaLip1 has a conserved serine residue within the GDSAG motif. In addition, a characteristic HGGG motif for oxyanion formation was identified. The HaLip1 protein was overexpressed in E. coli. SDS-PAGE, overlay assay, and mass analysis were performed to confirm purity and activity of HaLip1 protein. Furthermore, HaLip1 was crystallized in a condtion consisting of 25% (w/v) PEG 3350, 0.1 M Hepes-KOH, pH 7.5, 0.2 M sodium chloride. Diffraction data were processed to 1.30 Å with an Rmerge of 7.3%. The crystals of HaLip1 belong to the P212121, with unit cell parameters of a = 54.6 Å, b = 59.5 Å, and c = 82.9 Å.


2020 ◽  
Vol 8 (5) ◽  
pp. 663 ◽  
Author(s):  
Biagi Angelo Zullo ◽  
Gino Ciafardini

This review summarizes the current knowledge on the effects of oil-borne yeasts on the physicochemical, sensorial, and health-related characteristics of virgin olive oil (VOO) during storage. Bacteria, yeasts, and molds constitute the biotic fraction of freshly produced VOO. During storage, the bacteria and molds often die after a short period, while the yeasts survive and condition the quality of VOO. To date, approximately twenty-four yeast species have been isolated from different types of olive oil and its by-products, and seven of these species have been identified as new species. The activity of some yeasts of the biotic fraction of olive oil improves the sensorial characteristics of VOO. Some yeasts can also worsen the quality of the product by allowing the appearance of defects, oxidation of polar phenols, and triacylglycerol hydrolysis. Some yeast species of VOO show in vitro beneficial health effects, such as probiotic and antioxidant activities.


2016 ◽  
Vol 39 (12) ◽  
pp. 1933-1943 ◽  
Author(s):  
José Carlos Quilles Junior ◽  
Ana Lúcia Ferrarezi ◽  
Janaina Pires Borges ◽  
Rafaela Rodrigues Brito ◽  
Eleni Gomes ◽  
...  

Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3610-3624 ◽  
Author(s):  
Gabriele Schoiswohl ◽  
Maja Stefanovic-Racic ◽  
Marie N. Menke ◽  
Rachel C. Wills ◽  
Beth A. Surlow ◽  
...  

Emerging evidence suggests that impaired regulation of adipocyte lipolysis contributes to the proinflammatory immune cell infiltration of metabolic tissues in obesity, a process that is proposed to contribute to the development and exacerbation of insulin resistance. To test this hypothesis in vivo, we generated mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme catalyzing triacylglycerol hydrolysis. In contrast to previous models, adiponectin-driven Cre expression was used for targeted ATGL deletion. The resulting adipocyte-specific ATGL knockout (AAKO) mice were then characterized for metabolic and immune phenotypes. Lean and diet-induced obese AAKO mice had reduced adipocyte lipolysis, serum lipids, systemic lipid oxidation, and expression of peroxisome proliferator-activated receptor alpha target genes in adipose tissue (AT) and liver. These changes did not increase overall body weight or fat mass in AAKO mice by 24 weeks of age, in part due to reduced expression of genes involved in lipid uptake, synthesis, and adipogenesis. Systemic glucose and insulin tolerance were improved in AAKO mice, primarily due to enhanced hepatic insulin signaling, which was accompanied by marked reduction in diet-induced hepatic steatosis as well as hepatic immune cell infiltration and activation. In contrast, although adipocyte ATGL deletion reduced AT immune cell infiltration in response to an acute lipolytic stimulus, it was not sufficient to ameliorate, and may even exacerbate, chronic inflammatory changes that occur in AT in response to diet-induced obesity.


2015 ◽  
Vol 308 (10) ◽  
pp. E879-E890 ◽  
Author(s):  
John J. Dubé ◽  
Mitch T. Sitnick ◽  
Gabriele Schoiswohl ◽  
Rachel C. Wills ◽  
Mahesh K. Basantani ◽  
...  

Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser660 phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent.


Diabetes ◽  
2013 ◽  
Vol 62 (10) ◽  
pp. 3350-3361 ◽  
Author(s):  
M. T. Sitnick ◽  
M. K. Basantani ◽  
L. Cai ◽  
G. Schoiswohl ◽  
C. F. Yazbeck ◽  
...  

Author(s):  
Joanna Karbowska ◽  
Zdzislaw Kochan

AbstractDehydroepiandrosterone (DHEA) and its sulfate ester, DHEAS, are the major circulating adrenal steroids and serve as substrates for sex hormone biosynthesis. DHEA is effectively taken up by adipose tissue, where the concentrations of free DHEA are four to ten times higher than those found in the circulation. DHEA reduces adipose tissue mass and inhibits the proliferation and differentiation of adipocytes; it may also protect against obesity by lowering the activity of stearoyl-CoA desaturase 1 in fat cells. Recent studies demonstrate that DHEA stimulates triacylglycerol hydrolysis in adipose tissue by increasing the expression and activity of adipose triglyceride lipase and hormone-sensitive lipase, the key enzymes of lipolysis. DHEA has been shown to modulate insulin signaling pathways, enhance glucose uptake in adipocytes, and increase insulin sensitivity in patients with DHEA deficiency or abnormal glucose tolerance. Additionally, by suppressing the activity of 11β-hydroxysteroid dehydrogenase 1 in adipocytes, DHEA may promote intra-adipose inactivation of cortisol to cortisone. Several studies have demonstrated that DHEA may also regulate the expression and secretion of adipokines such as leptin, adiponectin, and resistin. The effects of DHEA on adipokine expression in adipose tissue are depot-specific, with visceral fat being the most responsive. The mechanisms underlying DHEA actions in adipose tissue are still unclear; however, they involve nuclear receptors such as androgen receptor and peroxisome proliferator-activated receptors γ and α. Because clinical trials investigating the effects of DHEA failed to yield consistent results, further studies are needed to clarify the role of DHEA in the regulation of human adipose tissue physiology.


Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4278-4289 ◽  
Author(s):  
Joanne Pagnon ◽  
Maria Matzaris ◽  
Romana Stark ◽  
Ruth C. R. Meex ◽  
S. Lance Macaulay ◽  
...  

Catecholamine-stimulated lipolysis occurs by activating adenylate cyclase and raising cAMP levels, thereby increasing protein kinase A (PKA) activity. This results in phosphorylation and modulated activity of several key lipolytic proteins. Adipose triglyceride lipase (ATGL) is the primary lipase for the initial step in triacylglycerol hydrolysis, and ATGL activity is increased during stimulated lipolysis. Here, we demonstrate that murine ATGL is phosphorylated by PKA at several serine residues in vitro and identify Ser406 as a functionally important site. ATGL null adipocytes expressing ATGL S406A (nonphosphorylatable) had reduced stimulated lipolysis. Studies in mice demonstrated increased ATGL Ser406 phosphorylation during fasting and moderate intensity exercise, conditions associated with elevated lipolytic rates. ATGL Ser404 (corresponding to murine Ser406) phosphorylation was increased by β-adrenergic stimulation but not 5′AMP-activated protein kinase activation in human subcutaneous adipose tissue explants, which correlated with lipolysis rates. Our studies suggest that β-adrenergic activation can result in PKA-mediated phosphorylation of ATGL Ser406, to moderately increase ATGL-mediated lipolysis.


Sign in / Sign up

Export Citation Format

Share Document