Inhibition of the hormone-sensitive lipase in adipose tissue by long-chain fatty acyl coenzyme A

Lipids ◽  
1984 ◽  
Vol 19 (2) ◽  
pp. 134-138 ◽  
Author(s):  
David L. Severson ◽  
Brenda Hurley
2020 ◽  
Vol 177 ◽  
pp. 104734 ◽  
Author(s):  
Xinlei Li ◽  
Jinqian Li ◽  
Yetong Feng ◽  
Hua Cai ◽  
Yi-Ping Li ◽  
...  

1965 ◽  
Vol 97 (2) ◽  
pp. 587-594 ◽  
Author(s):  
PB Garland ◽  
D Shepherd ◽  
DW Yates

1. Fluorimetric assays are described for CoASH, acetyl-CoA and long-chain fatty acyl-CoA, and are sensitive to at least 50mumumoles of each. 2. Application of these assays to rat-liver mitochondria oxidizing palmitate in the absence and presence of carnitine indicated two pools of intramitochondrial CoA. One pool could be acylated by palmitate and ATP, and the other pool acylated by palmitate with ATP and carnitine, or by palmitoylcarnitine alone. 3. The intramitochondrial content of acetyl-CoA is increased by the oxidation of palmitate both in the absence and presence of l-malate. 4. The conversion of palmitoyl-CoA into acetyl-CoA by beta-oxidation takes place without detectable accumulation of acyl-CoA intermediates.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Brandon C. Rosen ◽  
Nicholas A. Dillon ◽  
Nicholas D. Peterson ◽  
Yusuke Minato ◽  
Anthony D. Baughn

ABSTRACT Pyrazinamide (PZA) is a first-line tuberculosis (TB) drug that has been in clinical use for 60 years yet still has an unresolved mechanism of action. Based upon the observation that the minimum concentration of PZA required to inhibit the growth of Mycobacterium tuberculosis is approximately 1,000-fold higher than that of other first-line drugs, we hypothesized that M. tuberculosis expresses factors that mediate intrinsic resistance to PZA. To identify genes associated with intrinsic PZA resistance, a library of transposon-mutagenized Mycobacterium bovis BCG strains was screened for strains showing hypersusceptibility to the active form of PZA, pyrazinoic acid (POA). Disruption of the long-chain fatty acyl coenzyme A (CoA) ligase FadD2 enhanced POA susceptibility by 16-fold on agar medium, and the wild-type level of susceptibility was restored upon expression of fadD2 from an integrating mycobacterial vector. Consistent with the recent observation that POA perturbs mycobacterial CoA metabolism, the fadD2 mutant strain was more vulnerable to POA-mediated CoA depletion than the wild-type strain. Ectopic expression of the M. tuberculosis pyrazinamidase PncA, necessary for conversion of PZA to POA, in the fadD2 transposon insertion mutant conferred at least a 16-fold increase in PZA susceptibility under active growth conditions in liquid culture at neutral pH. Importantly, deletion of fadD2 in M. tuberculosis strain H37Rv also resulted in enhanced susceptibility to POA. These results indicate that FadD2 is associated with intrinsic PZA and POA resistance and provide a proof of concept for the target-based potentiation of PZA activity in M. tuberculosis.


2008 ◽  
Vol 26 (2) ◽  
pp. 233-237 ◽  
Author(s):  
Ying Zhang ◽  
Nurdan Bulur ◽  
Sébastien Peltier ◽  
Yvon A. Carpentier ◽  
Willy J. Malaisse ◽  
...  

2003 ◽  
Vol 95 (1) ◽  
pp. 314-321 ◽  
Author(s):  
Matthew J. Watt ◽  
George J. F. Heigenhauser ◽  
Marcus O'Neill ◽  
Lawrence L. Spriet

Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerols (IMTGs), but HSL regulation is poorly understood in skeletal muscle. The present study measured human skeletal muscle HSL activity at rest and during 120 min of cycling at 60% of peak O2 uptake. Several putative HSL regulators were also measured, including muscle long-chain fatty acyl-CoA (LCFA CoA) and free AMP contents and plasma epinephrine and insulin concentrations. HSL activity increased from resting levels by 10 min of exercise (from 2.09 ± 0.19 to 2.56 ± 0.22 mmol · min-1 · kg dry mass-1, P < 0.05), increased further by 60 min (to 3.12 ± 0.27 mmol · min-1 · kg dry mass-1, P < 0.05), and decreased to near-resting rates after 120 min of cycling. Skeletal muscle LCFA CoA increased ( P < 0.05) above rest by 60 min (from 15.9 ± 3.0 to 50.4 ± 7.9 μmol/kg dry mass) and increased further by 120 min. Estimated free AMP increased ( P < 0.05) from rest to 60 min and was ∼20-fold greater than that at rest by 120 min. Epinephrine was increased above rest ( P < 0.05) at 60 (1.47 ± 0.15 nM) and 120 min (4.87 ± 0.76 nM) of exercise. Insulin concentrations decreased rapidly and were lower than resting levels by 10 min and continued to decrease throughout exercise. In summary, HSL activity was increased from resting levels by 10 min, increased further by 60 min, and decreased to near-resting values by 120 min. The increased HSL activity at 60 min was associated with the stimulating effect of increased epinephrine and decreased insulin levels. After 120 min, the decreased HSL activity was associated with the proposed inhibitory effects of increased free AMP. The accumulation of LCFA CoA in the 2nd h of exercise may also have reduced the flux through HSL and accounted for the reduction in IMTG utilization previously observed late in prolonged exercise.


Sign in / Sign up

Export Citation Format

Share Document