Effects of cytosine arabinoside on in vivo and in vitro mouse limb development

In Vitro ◽  
1977 ◽  
Vol 13 (7) ◽  
pp. 434-442 ◽  
Author(s):  
Jeanne M. Manson ◽  
Michael L. Dourson ◽  
Carl C. Smith
2000 ◽  
Vol 201 (6) ◽  
pp. 483-490 ◽  
Author(s):  
Sharon Stewart ◽  
Scott Yi ◽  
Garo Kassabian ◽  
Mark Mayo ◽  
Anthony Sank ◽  
...  

Development ◽  
1975 ◽  
Vol 33 (2) ◽  
pp. 355-370
Author(s):  
R. M. Greene ◽  
D. M. Kochhar

The glutamine analogue, 6-diazo-5-oxo-L-norleucine (DON), has been shown to inhibit biosynthesis of purines and glycosaminoglycans, presumably by blocking the glutaminedependent steps in the biosynthetic pathways. The teratogenic potential of DON on the developing mouse limb-bud in vivo and in vitro was studied in an attempt to discriminate whether DON is exerting its teratogenic effect by interfering with glycosaminoglycan orpurine metabolism. A single intramuscular injection of DON (0·5 mg/kg) to ICR/DUB mice on day 10 of gestation resulted in 76% resorption, while fetuses surviving to day 17 exhibited growth retardation, median cleft lip, and limb malformations. Concurrent administration of Lglutamine (250 mg/kg) provided no protection against resorption or malformations, while 5-aminoimidazolecarboxamide (AIC, 250 mg/kg) decreased the resorption rate to 34% without significantly altering the incidence of malformations. Injection of DON alone on day 11 resulted in 87% of fetuses exhibiting limb malformations, with only 2% resorption. Concurrent injection of AIC decreased the frequency of limb malformations to 32%. L-Glutamine, D-glucosamine, or inosinic acid were without any protective effect in vivo. DON (5 μg/ml medium) added in vitro to organ cultures of day 11 mouse limb-buds caused all limbs to evidence cartilage abnormalities. In this system, either L-glutamine or D-glucosamine (0·5 mg/ml medium) provided protection against DON effects while AIC (0·5 mg/ml medium) offered no protection in vitro. These data suggest that DON exerts its effects in vivo by interfering with purine metabolism while in vitro its teratogenic action may be interruption of glycosaminoglycan biosynthesis. This may reflect upon the relative importance of growth and differentiation to limb development in vivo and in vitro. These data infer that limb development in vitro relies more on the differentiative process (differentiation of cartilage) than on growth, whereas limb development in vivo is dependent, at this stage, to a greater extent on growth for normal phenotypic expression.


2012 ◽  
Vol 23 (12) ◽  
pp. 2362-2372 ◽  
Author(s):  
Reyna Deeya Ballim ◽  
Cathy Mendelsohn ◽  
Virginia E. Papaioannou ◽  
Sharon Prince

TBX3, a member of the T-box transcription factor gene family, is a transcriptional repressor that is required for the development of the heart, limbs, and mammary glands. Mutations in TBX3 that result in reduced functional protein lead to ulnar-mammary syndrome, a developmental disorder characterized by limb, mammary gland, tooth, and genital abnormalities. Increased levels of TBX3 have been shown to contribute to the oncogenic process, and TBX3 is overexpressed in several cancers, including breast cancer, liver cancer, and melanoma. Despite its important role in development and postnatal life, little is known about the signaling pathways that modulate TBX3 expression. Here we show, using in vitro and in vivo assays, that retinoic acid (RA) activates endogenous TBX3 expression, which is mediated by an RA–receptor complex directly binding and activating the TBX3 promoter, and we provide evidence that this regulation may be functionally relevant in mouse embryonic limb development. Our data identify TBX3 as a direct target of the RA signaling pathway and extend our understanding of the role and regulation of TBX3 in limb development.


Development ◽  
1987 ◽  
Vol 101 (4) ◽  
pp. 673-684
Author(s):  
P.A. Merrifield ◽  
I.R. Konigsberg

Myosin alkali light chain accumulation in developing quail limb musculature has been analysed on immunoblots using a monoclonal antibody which recognizes an epitope common to fast myosin light chain 1 (MLC1f) and fast myosin light chain 3 (MLC3f). The limb muscle of early embryos (i.e. up to day 10 in ovo) has a MLC profile similar to that observed in myotubes cultured in vitro; although MLC1f is abundant, MLC3f cannot be detected. MLC3f is first detected in 11-day embryos. To determine whether this alteration in MLC3f accumulation is nerve or hormone dependent, limb buds with and without neural tube were cultured as grafts on the chorioallantoic membrane of chick hosts. Although differentiated muscle develops in both aneural and innervated grafts, innervated grafts contain approximately three times as much myosin as aneural grafts. More significantly, although aneural grafts reproducibly accumulate normal levels of MLC1f, they fail to accumulate detectable levels of MLC3f. In contrast, innervated grafts accumulate both MLC1f and MLC3f, suggesting that the presence of neural tube in the graft promotes the maturation, as well as the growth, of muscle tissue. This is the first positive demonstration that innervation is necessary for the accumulation of MLC3f that occurs during normal limb development in vivo.


Development ◽  
1980 ◽  
Vol 59 (1) ◽  
pp. 325-339
Author(s):  
T. E. Kwasigroch ◽  
D. M. Kochhar

Two techniques were used to examine the effect of vitamin A compounds (vitamin A acid = retinoic acid and vitamin A acetate) upon the relative strengths of adhesion among mouse limb-bud mesenchymal cells. Treatment with retinoic acid in vivo and with vitamin A acetate in vitro reduced the rate at which the fragments of mesenchyme rounded-up when cultured on a non-adhesive substratum, but these compounds did not alter the behavior of tissues tested in fragment-fusion experiments. These conflicting results indicate that the two tests measure different activities of cells and suggest that treatment with vitamin A alters the property(ies) of cells which regulate the internal viscosity of tissues.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 838-843 ◽  
Author(s):  
HN Steinberg ◽  
PL Page ◽  
SH Robinson

Abstract Two distinct classes of granulocyte progenitor cells present in normal mouse bone marrow are expressed sequentially in the vivo plasma clot diffusion chamber culture system. By several criteria, progenitor cells giving rise to granulocyte colonies on day 4 of culture (CFU-D4) are different from those giving rise to colonies on day 7 (CFU-D7). These differences include: cell cycle activity as measured by in vitro incubation with cytosine arabinoside, residual concentration in the bone marrow after in vivo treatment of donor mice with cytosine arabinoside or methotrexate, resistance to osmotic lysis, size as determined by velocity sedimentation, and the morphology of the granulocyte colonies to which these cells give rise. The CFU-D7 appears to represent an earlier progenitor cell than the CFU-D4 in the differentiation pathway of the granulocyte and is analagous in many respects to the BFU-E in the erythroid pathway.


1988 ◽  
Vol 450 (1-2) ◽  
pp. 378-381 ◽  
Author(s):  
Ambrish J. Patel ◽  
Anthony Hunt ◽  
Patricia Seaton

Development ◽  
1982 ◽  
Vol 67 (1) ◽  
pp. 113-125
Author(s):  
O. P. Flint ◽  
D. A. Ede

Facial, axial and limb development are all abnormal in the homozygous mutant mouse embryo (amputated). An interpretation of cell behaviour in vivo based on sectioned material which may explain these abnormalities has been previously suggested. In this study, somite cells cultured in vitro were found to behave exactly as predicted in this interpretation: they clump together, forming extensive areas of cell contact, and this has a profound effect on their mobility as measured by time-lapse cinemicrography. The similarity of cell behaviour in vitro and in vivo under two distinct sets of environmental conditions suggests that the abnormal cell behaviour is intrinsic to the cell, and directly linked to the mutation. The more extensive areas of cell contact formed between mutant cells suggests that the mutation changes the adhesive properties of the cell surface, but it cannot be excluded that the cells' motile apparatus is also affected.


Sign in / Sign up

Export Citation Format

Share Document