A brief study of cumulative damage in low-cycle fatigue testing of aisi 304 stainless steel at 650°c

1970 ◽  
Vol 1 (7) ◽  
pp. 2034-2036 ◽  
Author(s):  
J. B. Conway ◽  
J. T. Berling ◽  
R. H. Stentz
1991 ◽  
Vol 51-52 ◽  
pp. 1-6
Author(s):  
Sang Rok Lee ◽  
Hak Joo Lee ◽  
Jin Oh Chung ◽  
Sae-Wook Oh ◽  
Chung-Weon Huh ◽  
...  

1974 ◽  
Vol 96 (3) ◽  
pp. 171-176 ◽  
Author(s):  
J. D. Heald ◽  
E. Kiss

This paper presents the results of low-cycle fatigue testing and analysis of 26 piping components and butt-welded sections. The test specimens were fabricated from Type-304 stainless steel and carbon steel, materials which are typically used in the primary piping of light water nuclear reactors. Components included 6-in. elbows, tees, and girth butt-welded straight sections. Fatigue testing consisted of subjecting the specimens to deflection-controlled cyclic bending with the objective of simulating system thermal expansion type loading. Tests were conducted at room temperature and 550 deg F, with specimens at room temperature subjected to 1050 psi constant internal hydraulic pressure in addition to cyclic bending. In two tests at room temperature, however, stainless steel elbows were subjected to combined simultaneous cyclic internal pressure and cyclic bending. Predictions of the fatigue life of each of the specimens tested have been made according to the procedures specified in NB-3650 of Section III[1] in order to assess the code design margin. For the purpose of the assessment, predicted fatigue life is compared to actual fatigue life which is defined as the number of fatigue cycles producing complete through-wall crack growth (leakage). Results of this assessment show that the present code fatigue rules are adequately conservative.


1983 ◽  
Vol 105 (1) ◽  
pp. 21-30 ◽  
Author(s):  
A. M. Ermi ◽  
J. Moteff

Transmission and scanning electron microscopy were used to study the substructural development, crack initiation and crack propagation of AISI 304 stainless steel tested in low-cycle fatigue with various hold times. Tests at 593°C, a strain rate of 4 E-03 s−1 and strain ranges of 0.5, 1.0 and 2.0 percent were interrupted at various fractions of the fatigue life, both during rapid hardening and during saturation. Cells developed during the first few percent of the fatigue life, depending on a threshold stress value, below which cells were not observed. The cell size had a different dependence on the relaxed tensile stress during rapid hardening than during saturation. A work-hardening model relating the peak saturation stress to strain and cell size also applied during the late stages of rapid hardening. The number of cycles to initiate a crack of one grain diameter and to propagate the crack to failure were proportionally reduced for one minute tension holds. For a 60 minute tension hold, crack propagation occupied a much smaller fraction of the fatigue life.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Sign in / Sign up

Export Citation Format

Share Document