In-situ processing using rapid thermal chemical vapor deposition

1989 ◽  
Vol 18 (6) ◽  
pp. 731-736 ◽  
Author(s):  
V. Murali ◽  
A. T. Wu ◽  
L. Dass ◽  
M. R. Frost ◽  
D. B. Fraser ◽  
...  
1993 ◽  
Vol 303 ◽  
Author(s):  
M. L. Green ◽  
D. Brasen ◽  
H. Luftman ◽  
T. Boone ◽  
K. Krisch

ABSTRACTAlthough the benefits of in-situ processing seem intuitively obvious as higher yield due to particle and contamination control, there is presently little data to support these claims. However, materials characterization data on in-situ grown films suggest that it will be advantageous. In this paper we explore the advantages of in-situ processing in a load-locked rapid thermal chemical vapor deposition (RTCVD) chamber for such processes as cleaning, epitaxial growth, oxidation and polysilicon growth. The cold wall nature and low thermal mass of the RTCVD chamber make it an ideal candidate for a cluster module for thermal processing in an integrated process tool.


1992 ◽  
Vol 21 (1) ◽  
pp. 61-64 ◽  
Author(s):  
M. Sanganeria ◽  
D. T. Grider ◽  
M. C. öztürk ◽  
J. J. Wortman

1992 ◽  
Vol 60-61 ◽  
pp. 597-601
Author(s):  
Kinya Ashikaga ◽  
Morifumi Ohno ◽  
Toshiyuki Nakamura ◽  
Hisashi Fukuda ◽  
Seigo Ohno

1993 ◽  
Vol 303 ◽  
Author(s):  
Xiaowei Ren ◽  
Mehmet C. Öztürk ◽  
Douglas T. Grider ◽  
Mahesh Sanganeria ◽  
Stanton Ashburn

ABSTRACTIn this paper, we report electrical characterization of raised source/drain MOS transistors fabricated using selectively deposited, in-situ boron doped SixGe1-x as a solid diffusion source to form the source/drain junctions. The alloy can be deposited with an enhanced selectivity at temperatures as low as 600°C resulting in an abrupt doping profile at the SixGe1-x/Si interface. After deposition, junctions are formed by diffusion of boron from the deposited layer into the silicon substrate. The selectively deposited alloy can serve as a sacrificial layer for self-aligned silicide formation elimintaing the problem of silicon consumption in the substrate. In this work, selective depositions were performed in a typical cold-walled, lamp heated rapid thermal chemical vapor deposition (RTCVD) system at ∼ 610 °C using SiH2C12, GeH4 and B2H6 as the reactive gases. Using this process, MOS transistors with effective channel lengths down to 0.45 gtm were successfully fabricated.


1995 ◽  
Vol 403 ◽  
Author(s):  
V. Z-Q Li ◽  
M. R. Mirabedini ◽  
R. T. Kuehn ◽  
D. Gladden ◽  
D. Batchelor ◽  
...  

AbstractIn this work, polycrystalline SiGe has been viewed as an alternative gate material to polysilicon in single wafer processing for the deep submicrometer VLSI applications. We studied deposition of the silicon-germanium (SiGe) films with different germanium concentrations (up to 85%) on SiO2 in a rapid thermal chemical vapor deposition reactor using GeH4 and SiH4/H2 gas mixture with the temperature ranging from 550°C to 625°C. Since the SiGe RTCVD process is selective toward oxide and does not form nucleation sites on the oxide easily, an in-situ polysilicon flash technique is used to provide the necessary nucleation sites for the deposition of SiGe films with high germanium content. It was observed that with the in-situ polysilicon flash as a pre-nucleation seed, the SiGe deposited on SiO2 forms a continuous polycrystalline layer. Polycrystalline SiGe films of about 2000Å in thickness have a columnar grain structure with a grain size of approximately 1000Å. Compositional analyses from Auger Electron Spectroscopy (AES) and Rutherford backscattering (RBS) show that the high germanium incorporation in the SiGe films has a weak dependence on the deposition temperature. It is also noted that the germanium content across the film thickness is fairly constant which is a critical factor for the application of SiGe films as the gate material. Lastly, we found that the surface morphology of SiGe films become smoother at lower deposition temperature.


Sign in / Sign up

Export Citation Format

Share Document