Sintering kinetics of high-alumina ceramics with complex additives

1999 ◽  
Vol 56 (3-4) ◽  
pp. 103-107
Author(s):  
V. A. Lotov
2017 ◽  
Vol 76 (3) ◽  
pp. 171-175 ◽  
Author(s):  
Zelin Wan ◽  
Xuebin Zhang ◽  
Lei Guan ◽  
Chongxin Cai ◽  
Yi Feng ◽  
...  

2007 ◽  
Vol 43 (2) ◽  
pp. 153-155
Author(s):  
N. F. Kosenko ◽  
N. V. Filatova ◽  
A. A. Shiganov

2021 ◽  
Vol 272 ◽  
pp. 115369
Author(s):  
Masashi Watanabe ◽  
Takayuki Seki

2009 ◽  
Vol 409 ◽  
pp. 137-144 ◽  
Author(s):  
Stojana Veskovic-Bukudur ◽  
Tanja Leban ◽  
Milan Ambrozic ◽  
Tomaž Kosmač

The wear resistances of four standard-grade high-alumina ceramics were evaluated and related to their machining ability. Three of the material grades contained 96% of alumina and 4% of either calcium silicate, or magnesium silicate, or manganese titanate in the starting-powder composition. The nominal alumina content in the fourth material was 99.7%. The specimens were fabricated using a low-pressure injection-molding forming technique, followed by thermal de-binding and sintering. After sintering the four materials differ significantly in their grain size, bending strength and Vickers hardness. No direct relationship between the microstructural parameters and the mechanical properties was found, but there was a grain-size dependence of the surface finish after grinding under industrial conditions. The two silicate-containing ceramics exhibited considerably higher wear resistances than the two silicate-free ceramics, but no direct relationship between the abrasive wear rate during grinding and the cutting time was observed. The cutting ability represents a valuable material characteristic for industrial practice, but it should not be directly used for predicting the wear rate during grinding. Quantitative differences in the cutting time and abrasive wear rate were manifested in the different topographies of the worn surfaces. Cutting resulted in relatively large area fractions of plastically deformed surfaces, whereas pullouts dominated the worn surfaces after grinding.


2001 ◽  
Vol 189-191 ◽  
pp. 120-125 ◽  
Author(s):  
J. Marchi ◽  
José Carlos Bressiani ◽  
Ana Helena A. Bressiani

2011 ◽  
Vol 43 (2) ◽  
pp. 127-132 ◽  
Author(s):  
V.N. Antsiferov ◽  
S.E. Porozova ◽  
V.B. Kulmetyeva

Effect of various stabilizing additives on sintering kinetics of nanodisperse powders was studied by thermomechanical analysis. Temperature ranges of the most intense shrinking, characteristic points of shrinking rate changes were established. Peaks characterizing the most intense shrinking of nanodisperse zirconium powder samples were shown to allow to arrange the stabilizing additives as follows: Y2O3?CeO2?TiO2.


Sign in / Sign up

Export Citation Format

Share Document