Thermomechanical fatigue—damage mechanisms and mechanism-based life prediction methods

Sadhana ◽  
2003 ◽  
Vol 28 (1-2) ◽  
pp. 147-165 ◽  
Author(s):  
H. -J. Christ ◽  
A. Jung ◽  
H. J. Maier ◽  
R. Teteruk
2019 ◽  
Vol 28 (9) ◽  
pp. 1344-1366 ◽  
Author(s):  
Fang-Dai Li ◽  
De-Guang Shang ◽  
Cheng-Cheng Zhang ◽  
Xiao-Dong Liu ◽  
Dao-Hang Li ◽  
...  

The multiaxial thermomechanical fatigue properties for nickel-based superalloy GH4169 in aeroengine turbine discs are investigated in this paper. Four types of axial–torsional thermomechanical fatigue experiments were performed to identify the cyclic deformation behavior and the damage mechanism. The experimental results showed that the creep damage can be generated under thermally in-phase loading while it can be ignored under thermally out-of-phase loading, and the responded stress increasing phenomenon, that is, non-proportional hardening, can be shown under the mechanically out-of-phase strain loading. Based on the analysis of cyclic deformation behavior and damage mechanism, a life prediction method was proposed for multiaxial thermomechanical fatigue, in which the pure fatigue damage, the creep damage, and the interaction between them were simultaneously considered. The pure fatigue damage can be calculated by the isothermal fatigue parameters corresponding to the temperature without creep; the creep damage can be calculated by the principle of subdivision, and the creep–fatigue interaction can be determined by creep damage, fatigue damage, and an interaction coefficient which is used to reflect the creep–fatigue interaction strength. The predicted results showed that the proposed method is reasonable.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2250
Author(s):  
Mohammad Amjadi ◽  
Ali Fatemi

Short glass fiber-reinforced (SGFR) thermoplastics are used in many industries manufactured by injection molding which is the most common technique for polymeric parts production. Glass fibers are commonly used as the reinforced material with thermoplastics and injection molding. In this paper, a critical plane-based fatigue damage model is proposed for tension–tension or tension–compression fatigue life prediction of SGFR thermoplastics considering fiber orientation and mean stress effects. Temperature and frequency effects were also included by applying the proposed damage model into a general fatigue model. Model predictions are presented and discussed by comparing with the experimental data from the literature.


2015 ◽  
Vol 60 (1) ◽  
pp. 101-105 ◽  
Author(s):  
A. Rutecka ◽  
Z.L. Kowalewski ◽  
K. Makowska ◽  
K. Pietrzak ◽  
L. Dietrich

Abstract The results of comparative examinations of mechanical behaviour during fatigue loads and microstructure assessment before and after fatigue tests were presented. Composites of aluminium matrix and SiC reinforcement manufactured using the KoBo method were investigated. The combinations of two kinds of fatigue damage mechanisms were observed. The first one governed by cyclic plasticity and related to inelastic strain amplitude changes and the second one expressed in a form of ratcheting based on changes in mean inelastic strain. The higher SiC content the less influence of the fatigue damage mechanisms on material behaviour was observed. Attempts have been made to evaluate an appropriate fatigue damage parameter. However, it still needs further improvements.


Author(s):  
R. Ebner ◽  
P. Gruber ◽  
W. Ecker ◽  
O. Kolednik ◽  
M. Krobath ◽  
...  

1989 ◽  
Vol 20 (9) ◽  
pp. 1769-1783 ◽  
Author(s):  
R. W. Neu ◽  
Huseyin Sehitoglu

Sign in / Sign up

Export Citation Format

Share Document