SU(2) Yang-Mills equations in gauge-invariant variables on three-dimensional sphere

1996 ◽  
Vol 111 (5) ◽  
pp. 607-614 ◽  
Author(s):  
Gh. Zet ◽  
I. Gottlieb ◽  
V. Manta
2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Indrajit Mitra ◽  
H. S. Sharatchandra

We advocate and develop the use of the dreibein (and the metric) as prepotential for three-dimensional SO(3) Yang-Mills theory. Since the dreibein transforms homogeneously under gauge transformation, the metric is gauge invariant. For a generic gauge potential, there is a unique dreibein on fixing the boundary condition. Topologically nontrivial monopole configurations are given by conformally flat metrics, with scalar fields capturing the monopole centres. Our approach also provides an ansatz for the gauge potential covering the topological aspects.


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


2015 ◽  
Vol 11 (1) ◽  
pp. 2927-2949
Author(s):  
Lyubov E. Lokot

In the paper a theoretical study the both the quantized energies of excitonic states and their wave functions in grapheneand in materials with "Mexican hat" band structure dispersion as well as in zinc-blende GaN is presented. An integral twodimensionalSchrödinger equation of the electron-hole pairing for a particles with electron-hole symmetry of reflection isexactly solved. The solutions of Schrödinger equation in momentum space in studied materials by projection the twodimensionalspace of momentum on the three-dimensional sphere are found exactly. We analytically solve an integral twodimensionalSchrödinger equation of the electron-hole pairing for particles with electron-hole symmetry of reflection. Instudied materials the electron-hole pairing leads to the exciton insulator states. Quantized spectral series and lightabsorption rates of the excitonic states which distribute in valence cone are found exactly. If the electron and hole areseparated, their energy is higher than if they are paired. The particle-hole symmetry of Dirac equation of layered materialsallows perfect pairing between electron Fermi sphere and hole Fermi sphere in the valence cone and conduction cone andhence driving the Cooper instability. The solutions of Coulomb problem of electron-hole pair does not depend from a widthof band gap of graphene. It means the absolute compliance with the cyclic geometry of diagrams at justification of theequation of motion for a microscopic dipole of graphene where >1 s r . The absorption spectrums for the zinc-blendeGaN/(Al,Ga)N quantum well as well as for the zinc-blende bulk GaN are presented. Comparison with availableexperimental data shows good agreement.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


2001 ◽  
Vol 64 (10) ◽  
Author(s):  
John R. Hiller ◽  
Stephen Pinsky ◽  
Uwe Trittmann

2005 ◽  
Vol 72 (10) ◽  
Author(s):  
M. A. L. Capri ◽  
D. Dudal ◽  
J. A. Gracey ◽  
V. E. R. Lemes ◽  
R. F. Sobreiro ◽  
...  
Keyword(s):  

2015 ◽  
Vol 2015 (7) ◽  
Author(s):  
Antón F. Faedo ◽  
David Mateos ◽  
Javier Tarrío
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document