On the effect of the eccentricity of a planetary orbit on the stability of satellite orbits

1990 ◽  
Vol 11 (1) ◽  
pp. 11-22 ◽  
Author(s):  
S. Ichtiaroglou ◽  
G. Voyatzis
2009 ◽  
Vol 5 (H15) ◽  
pp. 691-692
Author(s):  
Jason Eberle ◽  
Manfred Cuntz ◽  
Zdzislaw E. Musielak

AbstractAn important factor in estimating the likelihood of life elsewhere in the Universe is determining the stability of a planet's orbit. A significant fraction of stars like the Sun occur in binary systems which often has a considerable effect on the stability of any planets in such a system. In an effort to determine the stability of planets in binary star systems, we conducted a numerical simulation survey of several mass ratios and initial conditions. We then estimated the stability of the planetary orbit using a method that utilizes the hodograph to determine the effective eccentricity of the planetary orbit. We found that this method can serve as an orbital stability criterion for the planet.


2020 ◽  
Vol 12 (8) ◽  
pp. 1280 ◽  
Author(s):  
Norman G. Loeb ◽  
David R. Doelling

The Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product uses a diurnal correction methodology to produce a shortwave (SW) top-of-atmosphere (TOA) radiative flux time series that accounts for diurnal cycle changes between CERES observation times while ensuring that the stability of the EBAF record is tied as closely as possible to CERES instrument calibration stability. The current EBAF Ed4.1 data product combines observations from Terra and Aqua after July 2002. However, the Terra satellite will start to drift in Mean Local Time (MLT) in early 2021, and Aqua’s MLT will start to drift in 2022. To ensure the EBAF record remains temporally stable, we explore the feasibility of using only CERES instruments from afternoon satellite orbits with a tight 1330 MLT after July 2002. We test this approach by directly comparing SW TOA fluxes generated after applying diurnal corrections to Aqua-only and to Terra + Aqua for 07/2002–06/2019. We find that global climatological mean SW TOA fluxes for these two cases are within 0.01 Wm−2 and the trend of the difference is < is 0.03 Wm−2 per decade.


1982 ◽  
Vol 99 ◽  
pp. 605-613
Author(s):  
P. S. Conti

Conti: One of the main conclusions of the Wolf-Rayet symposium in Buenos Aires was that Wolf-Rayet stars are evolutionary products of massive objects. Some questions:–Do hot helium-rich stars, that are not Wolf-Rayet stars, exist?–What about the stability of helium rich stars of large mass? We know a helium rich star of ∼40 MO. Has the stability something to do with the wind?–Ring nebulae and bubbles : this seems to be a much more common phenomenon than we thought of some years age.–What is the origin of the subtypes? This is important to find a possible matching of scenarios to subtypes.


1999 ◽  
Vol 173 ◽  
pp. 309-314 ◽  
Author(s):  
T. Fukushima

AbstractBy using the stability condition and general formulas developed by Fukushima (1998 = Paper I) we discovered that, just as in the case of the explicit symmetric multistep methods (Quinlan and Tremaine, 1990), when integrating orbital motions of celestial bodies, the implicit symmetric multistep methods used in the predictor-corrector manner lead to integration errors in position which grow linearly with the integration time if the stepsizes adopted are sufficiently small and if the number of corrections is sufficiently large, say two or three. We confirmed also that the symmetric methods (explicit or implicit) would produce the stepsize-dependent instabilities/resonances, which was discovered by A. Toomre in 1991 and confirmed by G.D. Quinlan for some high order explicit methods. Although the implicit methods require twice or more computational time for the same stepsize than the explicit symmetric ones do, they seem to be preferable since they reduce these undesirable features significantly.


Author(s):  
Godfrey C. Hoskins ◽  
V. Williams ◽  
V. Allison

The method demonstrated is an adaptation of a proven procedure for accurately determining the magnification of light photomicrographs. Because of the stability of modern electrical lenses, the method is shown to be directly applicable for providing precise reproducibility of magnification in various models of electron microscopes.A readily recognizable area of a carbon replica of a crossed-line diffraction grating is used as a standard. The same area of the standard was photographed in Phillips EM 200, Hitachi HU-11B2, and RCA EMU 3F electron microscopes at taps representative of the range of magnification of each. Negatives from one microscope were selected as guides and printed at convenient magnifications; then negatives from each of the other microscopes were projected to register with these prints. By deferring measurement to the print rather than comparing negatives, correspondence of magnification of the specimen in the three microscopes could be brought to within 2%.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Sign in / Sign up

Export Citation Format

Share Document