The effectiveness of bycatch reduction devices on crab pots at reducing capture and mortality of diamondback terrapins (Malaclemys terrapin) in Florida

2007 ◽  
Vol 30 (1) ◽  
pp. 179-185 ◽  
Author(s):  
Joseph A. Butler ◽  
George L. Heinrich
1967 ◽  
Vol 46 (1) ◽  
pp. 161-167 ◽  
Author(s):  
P. J. BENTLEY ◽  
W. L. BRETZ ◽  
KNUT SCHMIDT-NIELSEN

1. While in hypertonic environment diamondback terrapins (Malaclemys centrata) slowly lose water by osmosis through the integument and as urine through the kidney. 2. Small amounts of sodium are gained, probably largely as a result of diffusion through the integument rather than by drinking, and this sodium is principally excreted extrarenally. Nevertheless, the solute concentration in the blood of such turtles increases. 3. When returned to fresh water the animals rehydrate and excrete accumulated excess sodium. 4. In these ways they could undoubtedly survive for extended periods in the absence of fresh water, but it is not clear whether they could do so indefinitely.


Elements ◽  
2007 ◽  
Vol 3 (1) ◽  
Author(s):  
Brad Macdonald ◽  
Alexis Rife

Northern diamondback terrapin (<span style="font-family: mceinline;"><em>malaclemys terrapin</em>) turtle </span>hatchlings raised as part of a laboratory headstarting program are the focus of kin recognition studies taking place at Boston College. Experiments examining basking behaviors in 13 trials of familiar kin and 11 trials of unfamiliar non-kin. Familiar kin averaged more aggressive engagements per trial (2.44 vs. 0.36), more displacements per trial (13.36 vs. 3.91), and more instances of climbing on one another (13.36 vs. 2.36). Familiar kin basked in congregations more frequently per trial than unfamiliar non-kin. These data suggest that diamondback terrapins treat each other differently based on either kinship or familiarity-or both. Further research will be conducted on familiar and unfamiliar kin and non-kin groupings to help elucidate the existing data by determining which variable has greater consequence and if Hamilton's kin selection theory can be applied to terrapin juvenile social behavior.


Author(s):  
Brian K. Mealey ◽  
John D. Baldwin ◽  
Greta B. Parks-Mealey ◽  
Gregory D. Bossart ◽  
Michael R.J. Forstner

The Mangrove Diamondback Terrapin, (Malaclemys terrapin rhizophorarum) is dependent on a very broad array of the services provided by the mangrove ecosystem. We sought to evaluate both the turtles and their habitat by an integrated assessment of physical, chemical, and physiological parameters. Extreme site fidelity of the turtles to mangrove habitat was evident along with a strong female biased sex ratio. We provide blood serum values and microbial cultures as baselines from these turtles in the wild. Salmonella sp., a potentially zoonotic pathogen, was isolated from one female. Ultimately, the health of these turtle populations may be reflective of the integrity of the mangrove system on which they depend.


Sign in / Sign up

Export Citation Format

Share Document