scholarly journals Vortex motion in the early stages of unsteady flow around a circular cylinder

Sadhana ◽  
1984 ◽  
Vol 7 (2) ◽  
pp. 119-135 ◽  
Author(s):  
Guo-Can Ling ◽  
Xie-Yuan Yin
2013 ◽  
Vol 730 ◽  
pp. 145-161 ◽  
Author(s):  
Qiqi Wang ◽  
Jun-Hui Gao

AbstractThis paper analyses the adjoint solution of the Navier–Stokes equation. We focus on flow across a circular cylinder at three Reynolds numbers, ${\mathit{Re}}_{D} = 20, 100$ and $500$. The quantity of interest in the adjoint formulation is the drag on the cylinder. We use classical fluid mechanics approaches to analyse the adjoint solution, which is a vector field similar to a flow field. Production and dissipation of kinetic energy of the adjoint field is discussed. We also derive the evolution of circulation of the adjoint field along a closed material contour. These analytical results are used to explain three numerical solutions of the adjoint equations presented in this paper. The adjoint solution at ${\mathit{Re}}_{D} = 20$, a viscous steady state flow, exhibits a downstream suction and an upstream jet, the opposite of the expected behaviour of a flow field. The adjoint solution at ${\mathit{Re}}_{D} = 100$, a periodic two-dimensional unsteady flow, exhibits periodic, bean-shaped circulation in the near-wake region. The adjoint solution at ${\mathit{Re}}_{D} = 500$, a turbulent three-dimensional unsteady flow, has complex dynamics created by the shear layer in the near wake. The magnitude of the adjoint solution increases exponentially at the rate of the first Lyapunov exponent. These numerical results correlate well with the theoretical analysis presented in this paper.


1970 ◽  
Vol 4 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Md Mahbubar Rahman ◽  
Md. Mashud Karim ◽  
Md Abdul Alim

The dynamic characteristics of the pressure and velocity fields of unsteady incompressible laminar and turbulent wakes behind a circular cylinder are investigated numerically and analyzed physically. The governing equations, written in the velocity pressure formulation are solved using 2-D finite volume method. The initial mechanism for vortex shedding is demonstrated and unsteady body forces are evaluated. The turbulent flow for Re = 1000 & 3900 are simulated using k-? standard, k-? Realizable and k-? SST turbulence models. The capabilities of these turbulence models to compute lift and drag coefficients are also verified. The frequencies of the drag and lift oscillations obtained theoretically agree well with the experimental results. The pressure and drag coefficients for different Reynolds numbers were also computed and compared with experimental and other numerical results. Due to faster convergence, 2-D finite volume method is found very much prospective for turbulent flow as well as laminar flow.Keywords: Viscous unsteady flow, laminar & turbulent flow, finite volume method, circular cylinder.DOI: 10.3329/jname.v4i1.914Journal of Naval Architecture and Marine Engineering 4(2007) 27-42


1995 ◽  
Vol 149 (1-2) ◽  
pp. 108-110 ◽  
Author(s):  
Mikhail S. Krakov ◽  
Shinichi Kamiyama

1925 ◽  
Vol 29 (172) ◽  
pp. 189-195
Author(s):  
R. C. J. Howland

The study of aerodynamics is still largely empirical, and there seems little hope at present that the gap between theory and practice will be sensibly diminished by any means at present known to the applied mathematician. Yet the light that would, in all likelihood, be thrown on a number of practical problems by the complete solution of even a single case of turbulent motion would be very great. Of the problems that can be attempted, that of the flow of a fluid past a circular cylinder is likely to prove the least intractable.


1990 ◽  
Vol 220 ◽  
pp. 459-484 ◽  
Author(s):  
H. M. Badr ◽  
M. Coutanceau ◽  
S. C. R. Dennis ◽  
C. Ménard

The unsteady flow past a circular cylinder which starts translating and rotating impulsively from rest in a viscous fluid is investigated both theoretically and experimentally in the Reynolds number range 103 [les ] R [les ] 104 and for rotational to translational surface speed ratios between 0.5 and 3. The theoretical study is based on numerical solutions of the two-dimensional unsteady Navier–Stokes equations while the experimental investigation is based on visualization of the flow using very fine suspended particles. The object of the study is to examine the effect of increase of rotation on the flow structure. There is excellent agreement between the numerical and experimental results for all speed ratios considered, except in the case of the highest rotation rate. Here three-dimensional effects become more pronounced in the experiments and the laminar flow breaks down, while the calculated flow starts to approach a steady state. For lower rotation rates a periodic structure of vortex evolution and shedding develops in the calculations which is repeated exactly as time advances. Another feature of the calculations is the discrepancy in the lift and drag forces at high Reynolds numbers resulting from solving the boundary-layer limit of the equations of motion rather than the full Navier–Stokes equations. Typical results are given for selected values of the Reynolds number and rotation rate.


1988 ◽  
Vol 1 (21) ◽  
pp. 68
Author(s):  
Kenjirou Hayashi ◽  
Toshiyuki Shigemura

The unsteady characteristics of flow around a vertical circular cylinder in a typical wave, under which the lift force acting on it is very stable and has a frequency which is twice that of the incident wave, have been investigated experimentally. The relationship between the fluctuating flow velocities near the boundary layer separation points and the lift force acting on a sectional part of the cylinder has been understood quantitatively. To clarify the region where the appearance of stable lift force occurs, the long time records of lift forces acting on vertical cylinders in waves are also performed.


2020 ◽  
Vol 200 ◽  
pp. 107051
Author(s):  
Sercan Yagmur ◽  
Sercan Dogan ◽  
Muharrem Hilmi Aksoy ◽  
Ilker Goktepeli

2019 ◽  
Vol 879 ◽  
pp. 217-254 ◽  
Author(s):  
Sangseung Lee ◽  
Donghyun You

Unsteady flow fields over a circular cylinder are used for training and then prediction using four different deep learning networks: generative adversarial networks with and without consideration of conservation laws; and convolutional neural networks with and without consideration of conservation laws. Flow fields at future occasions are predicted based on information on flow fields at previous occasions. Predictions of deep learning networks are made for flow fields at Reynolds numbers that were not used during training. Physical loss functions are proposed to explicitly provide information on conservation of mass and momentum to deep learning networks. An adversarial training is applied to extract features of flow dynamics in an unsupervised manner. Effects of the proposed physical loss functions and adversarial training on predicted results are analysed. Captured and missed flow physics from predictions are also analysed. Predicted flow fields using deep learning networks are in good agreement with flow fields computed by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document