Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary

2003 ◽  
Vol 13 (4) ◽  
pp. 498-506 ◽  
Author(s):  
Chen Shenliang ◽  
Zhang Guoan ◽  
Yang Shilun
2014 ◽  
Vol 1010-1012 ◽  
pp. 1099-1103
Author(s):  
Wei Na Zhang ◽  
Yi Gang Wang ◽  
Tong Jun Yang ◽  
Hui Ming Huang

Abstract. The saltwater intrusion in the Yangtze River Estuary is very frequent and complicated with a great effect on freshwater supply in Shanghai and nearby cities. By using the hydrologic data observed in dry season, the temporal and spatial variation of the saltwater intrusion in the Yangtze River Estuary were analyzed. The results show that the saltwater intrusion of the south branch is mainly induced by the saltwater spilling over from the north branch, which causes the Chenhang reservoir being plagued by saltwater intrusion during dry season. As the saltwater group from the north branch moving downward along the south branch, the longitudinal salinity distribution present a high-low-high shape during spring tide cycle, low-high-low-high shape during medium tide cycle and low-high shape during neap tide cycle along the south branch-south channel-south passage. Moreover, the north branch is controlled by high saline water with the increase of the salinity in the upstream reach in medium and spring tides, but this phenomenon is vanished in neap tide. In addition, the vertical distribution of salinity is more homogeneous in shoals than that in deep channels, which is induced by mixing degree in water column.


2014 ◽  
Vol 1010-1012 ◽  
pp. 399-402
Author(s):  
Hao Liu ◽  
Wen Shan Xu ◽  
Hong Xuan Kang ◽  
Bao Shu Yin

This paper mainly focuses on the temporal and spatial variation of nutrients in the Yangtze River Estuary. Observations show that the high level of nitrate concentration appears in the coast waters and gradually decreases toward the continental shelf both in summer and in winter; while the ammonium and phosphate concentrations show the relatively high level in the bottom layer of the water column in summer, since ammonium and phosphate can be regenerated on the sediments and reenter the bottom layer of the water column to make up their contents. In winter, the nutrients are well-distributed in the vertical due to the strong mixing mechanism. The further examination of the nutrient limitation, according to the Redfield theory, shows that the phosphorus limitation dominates in the river mouth and then shift to the nitrogen limitation toward the continental shelf gradually. The variation of the nutrient limitation may be dependent on the relative strength between the Changjiang Diluted Water and the Intrusion Branch of the Kuroshio Current.


Sign in / Sign up

Export Citation Format

Share Document