The Temporal and Spatial Variation of the Nutrientsin the Yangtze River Estuary

2014 ◽  
Vol 1010-1012 ◽  
pp. 399-402
Author(s):  
Hao Liu ◽  
Wen Shan Xu ◽  
Hong Xuan Kang ◽  
Bao Shu Yin

This paper mainly focuses on the temporal and spatial variation of nutrients in the Yangtze River Estuary. Observations show that the high level of nitrate concentration appears in the coast waters and gradually decreases toward the continental shelf both in summer and in winter; while the ammonium and phosphate concentrations show the relatively high level in the bottom layer of the water column in summer, since ammonium and phosphate can be regenerated on the sediments and reenter the bottom layer of the water column to make up their contents. In winter, the nutrients are well-distributed in the vertical due to the strong mixing mechanism. The further examination of the nutrient limitation, according to the Redfield theory, shows that the phosphorus limitation dominates in the river mouth and then shift to the nitrogen limitation toward the continental shelf gradually. The variation of the nutrient limitation may be dependent on the relative strength between the Changjiang Diluted Water and the Intrusion Branch of the Kuroshio Current.

2014 ◽  
Vol 1010-1012 ◽  
pp. 1099-1103
Author(s):  
Wei Na Zhang ◽  
Yi Gang Wang ◽  
Tong Jun Yang ◽  
Hui Ming Huang

Abstract. The saltwater intrusion in the Yangtze River Estuary is very frequent and complicated with a great effect on freshwater supply in Shanghai and nearby cities. By using the hydrologic data observed in dry season, the temporal and spatial variation of the saltwater intrusion in the Yangtze River Estuary were analyzed. The results show that the saltwater intrusion of the south branch is mainly induced by the saltwater spilling over from the north branch, which causes the Chenhang reservoir being plagued by saltwater intrusion during dry season. As the saltwater group from the north branch moving downward along the south branch, the longitudinal salinity distribution present a high-low-high shape during spring tide cycle, low-high-low-high shape during medium tide cycle and low-high shape during neap tide cycle along the south branch-south channel-south passage. Moreover, the north branch is controlled by high saline water with the increase of the salinity in the upstream reach in medium and spring tides, but this phenomenon is vanished in neap tide. In addition, the vertical distribution of salinity is more homogeneous in shoals than that in deep channels, which is induced by mixing degree in water column.


2021 ◽  
Vol 13 (10) ◽  
pp. 1875
Author(s):  
Wenping Xie ◽  
Jingsong Yang ◽  
Rongjiang Yao ◽  
Xiangping Wang

Soil salt-water dynamics in the Yangtze River Estuary (YRE) is complex and soil salinity is an obstacle to regional agricultural production and the ecological environment in the YRE. Runoff into the sea is reduced during the impoundment period as the result of the water-storing process of the Three Gorges Reservoir (TGR) in the upper reaches of the Yangtze River, which causes serious seawater intrusion. Soil salinity is a problem due to shallow and saline groundwater under serious seawater intrusion in the YRE. In this research, we focused on the temporal variation and spatial distribution characteristics of soil salinity in the YRE using geostatistics combined with proximally sensed information obtained by an electromagnetic induction (EM) survey method in typical years under the impoundment of the TGR. The EM survey with proximal sensing method was applied to perform soil salinity survey in field in the Yangtze River Estuary, allowing quick determination and quantitative assessment of spatial and temporal variation of soil salinity from 2006 to 2017. We developed regional soil salinity survey and mapping by coupling limited laboratory data with proximal sensed data obtained from EM. We interpreted the soil electrical conductivity by constructing a linear model between the apparent electrical conductivity data measured by an EM 38 device and the soil electrical conductivity (EC) of soil samples measured in laboratory. Then, soil electrical conductivity was converted to soil salt content (soil salinity g kg−1) through established linear regression model based on the laboratory data of soil salinity and soil EC. Semivariograms of regional soil salinity in the survey years were fitted and ordinary kriging interpolation was applied in interpolation and mapping of regional soil salinity. The cross-validation results showed that the prediction results were acceptable. The soil salinity distribution under different survey years was presented and the area of salt affected soil was calculated using geostatistics method. The results of spatial distribution of soil salinity showed that soil salinity near the riverbanks and coastlines was higher than that of inland. The spatial distribution of groundwater depth and salinity revealed that shallow groundwater and high groundwater salinity influenced the spatial distribution characteristics of soil salinity. Under long-term impoundment of the Three Gorges Reservoir, the variation of soil salinity in different hydrological years was analyzed. Results showed that the area affected by soil salinity gradually increased in different hydrological year types under the impoundment of the TGR.


Sign in / Sign up

Export Citation Format

Share Document