Electron backscatter diffraction determination of grain orientation and constituent phases

1999 ◽  
Vol 4 (2) ◽  
pp. 174-174
Author(s):  
Chen Xiaomei ◽  
Liu Jing ◽  
Wang Jianbo ◽  
Zhang Ruikang ◽  
Wang Dahai ◽  
...  
1999 ◽  
Vol 4 (1) ◽  
pp. 70-70
Author(s):  
Chen Xiaomei ◽  
Liu Jing ◽  
Wang Jianbo ◽  
Zhang Ruikang ◽  
Wang Dahai ◽  
...  

2013 ◽  
Vol 853 ◽  
pp. 143-150 ◽  
Author(s):  
Reza A. Mirshams ◽  
Ashish K. Srivastava

This paper presents the results of an experimental investigation on the effects of orientation and grain size on nanoindentation measurements of hardness and modulus of elasticity for three polycrystalline metals: copper, nickel, and iron. Three geometrically different indenter tips were used, and the pile-ups were characterized with a surface probe instrument. The electron backscatter diffraction (EBSD) technique and a scanning electron microscope (SEM) were used to characterize grain orientation and microstructure. It was found that additional contact areas due to pile-ups have a significant effect on determination of mechanical properties by the nanoindenter.


2012 ◽  
Vol 18 (4) ◽  
pp. 876-884 ◽  
Author(s):  
Joseph R. Michael ◽  
Bonnie B. McKenzie ◽  
Donald F. Susan

AbstractUnderstanding the growth of whiskers or high aspect ratio features on substrates can be aided when the crystallography of the feature is known. This study has evaluated three methods that utilize electron backscatter diffraction (EBSD) for the determination of the crystallographic growth direction of an individual whisker. EBSD has traditionally been a technique applied to planar, polished samples, and thus the use of EBSD for out-of-surface features is somewhat more difficult and requires additional steps. One of the methods requires the whiskers to be removed from the substrate resulting in the loss of valuable physical growth relationships between the whisker and the substrate. The other two techniques do not suffer this disadvantage and provide the physical growth information as well as the crystallographic growth directions. The final choice of method depends on the information required. The accuracy and the advantages and disadvantages of each method are discussed.


2019 ◽  
Vol 52 (5) ◽  
pp. 984-996 ◽  
Author(s):  
R. Hielscher ◽  
C. B. Silbermann ◽  
E. Schmidl ◽  
Joern Ihlemann

This paper compares several well known sliding-window methods for denoising crystal orientation data with variational methods adapted from mathematical image analysis. The variational methods turn out to be much more powerful in terms of preserving low-angle grain boundaries and filling holes of non-indexed orientations. The effect of denoising on the determination of the kernel average misorientation and the geometrically necessary dislocation density is also discussed. Synthetic as well as experimental data are considered for this comparison. The examples demonstrate that variational denoising techniques are capable of significantly improving the accuracy of properties derived from electron backscatter diffraction maps.


2013 ◽  
Vol 46 (2) ◽  
pp. 483-492 ◽  
Author(s):  
Mariusz Jedrychowski ◽  
Jacek Tarasiuk ◽  
Brigitte Bacroix ◽  
Sebastian Wronski

The main aim of the present work is to study the relation between microstructural features – such as local misorientations, grain orientation gradients and grain boundary structures – and thermomechanical treatment of hexagonal zirconium (Zr702α). Electron backscatter diffraction (EBSD) topological maps are used to analyze the aforementioned material parameters at the early stages of plastic deformation imposed by channel-die compression, as well as at a partial recrystallization state achieved by brief annealing. The evolution of local misorientations and orientation gradients is investigated using the so-called kernel average misorientation (KAM) and grain orientation spread (GOS) statistics implemented in the TSLOIMdata analysis software [TexSEM Laboratories (2004), Draper, UT, USA]. In the case of grain boundaries (GBs) a new method of analysis is presented. As an addition to the classical line segments method, where the grain boundary is represented by line segments that separate particular pairs of neighboring points, an approach that focuses on grain boundary areas is proposed. These areas are represented by sets of EBSD points, which are specially selected from a modified calculation procedure for the KAM. Different evolution mechanisms of intragranular boundaries, low-angle grain boundaries and high-angle grain boundaries are observed depending on the compression direction. The observed differences are consistent with the results obtained from KAM and GOS analysis. It is also concluded that the proposed method of grain boundary characterization seems to be promising, as it provides new and interesting analysis tools such as textures, absolute fractions and other EBSD statistics of the GB areas. This description may be more compatible with a real deformed microstructure, especially for grain boundaries with very small misorientation, which are indeed clustered areas of lattice defect accumulation.


2010 ◽  
Vol 43 (6) ◽  
pp. 1338-1355 ◽  
Author(s):  
Florian Bachmann ◽  
Ralf Hielscher ◽  
Peter E. Jupp ◽  
Wolfgang Pantleon ◽  
Helmut Schaeben ◽  
...  

Highly concentrated distributed crystallographic orientation measurements within individual crystalline grains are analysed by means of ordinary statistics neglecting their spatial reference. Since crystallographic orientations are modelled as left cosets of a given subgroup of SO(3), the non-spatial statistical analysis adapts ideas borrowed from the Bingham quaternion distribution on {\bb S}^3. Special emphasis is put on the mathematical definition and the numerical determination of a `mean orientation' characterizing the crystallographic grain as well as on distinguishing several types of symmetry of the orientation distribution with respect to the mean orientation, like spherical, prolate or oblate symmetry. Applications to simulated as well as to experimental data are presented. All computations have been done with the free and open-source texture toolboxMTEX.


Sign in / Sign up

Export Citation Format

Share Document